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Explainable Al:
From Theory to Motivation,
Applications and Challenges



What is "Explainable Al” 7

explores and investigates
methods to produce or complement

to make the
internal logic and the outcome of the

algorithms, making such process
humans.



What is "Explainable Al” 7

Explicability, understood as incorporating both
intelligibility ( for non-experts, e.g.,
patients or business customers, and for experts, e.g.,
product designers or engineers) and accountability (

).
* 5 core principles for ethical Al:
* beneficence, non-maleficence, autonomy, and justice
* a new principle is needed in addition: explicability
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Tutorial Outline (1)

* Motivating Examples

* Explanation in Al
* Explanations in different Al fields
 The Role of Humans
e Evaluation Protocols & Metrics

* Explainable Machine Learning
 What is a Black Box?

* Interpretable, Explainable, and Comprehensible Models
* Open the Black Box Problems

* Guidelines for explaining Al systems



Motivating Examples

e Criminal Justice

€he New YJork Times

OP-ED CONTRIBUTOR

When a Computer
Program Keeps You in Jail

. People Wrongly denied The Big Read Artificial intelligence <+ Add to myFT>

* Recidivism prediction
e Unfair Police dispatch

* Finance:

Insurance: Robots learn the
business of covering risk

* Credit scoring, loan approval
* Insurance quotes

* Healthcare
Al as 3"4party actor in physician -
patient relationship
* Learning must be done with

available data: cannot randomize
cares given to patients!

e Must validate models before use.
29 Novembre 2019

Stanford

MEDICINE

News Center

% Email B3 W Tweot

Researchers say use of artificial intelligence in medicine raises
ethical questions

In a perspective piece, Stanford researchers discuss the ethical implications of using
machine-learning tools in making health care decisions for patients.
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Motivation (4)

* Critical Systems
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20 seconds 20 seconds 20 seconds
[Caruana et al. 2015, Holzinger et al. 2017, Magnus et al. 2018]
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The Need for Explanation

7
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* Critical systems / Decisive moments
* Human factor:
* Human decision-making affected by greed, prejudice, fatigue, Poor
scalability.
* Bias
* Algorithmic decision-making on the rise.
More objective than humans?
Potentially discriminative
Opaque
Information and power asymmetry

* High-stakes scenarios = ethical problems!

[Lepri et al. 2018]
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Right of Explanation

General
Data
Protection
Regulation

Since 25 May 2018, GDPR establishes a right for all individuals to obtain “meaningful explanations of the logic
involved” when “automated (algorithmic) individual decision—mgking”, including profiling, takes place.



Ethical principles for trustworthy Al

INDEPENDENT
HIGH-LEVEL EXPERT GROUP ON

respect for human autonomy ARTIFICIAL INTELLIGENCE
Self-determinati()n SET UP BY THE EUROPEAN COMMISSION IN JUNE 2018

no-coercion
no-manipulation

prevention of harm
safe and secure

fairness

% K %k

* *
* L%
no-discrimination (no-bias) * *
explicability * 5k Kk

User trust and transparency
intelligibility
accountability ETHICS GUIDELINES

FOR TRUSTWORTHY Al

10
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Explanation in different Al fields
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Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case- Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Based Reasoning Through Prototypes: A Neural Network That Explains Representations of Trained Networks. NIPS 1995: 24-30
Its Predictions. AAAI 2018: 3530-3537
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Explanation in different Al fields

* Machine Learning
* Computer Vision

29 Novembre 2019

(a) Input Image (b) Ground Truth (¢) Semantic Segmentation (d) Aleatoric Uncertainty (¢) Epistemic Uncertainty

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NIPS 2017: 5580-5590

Integrated  Gradient

. Edge
Original ) Guided Guided Integrated Gradients
Image Gradient SmoothGrad pgackProp GradCAM Gradients SmoothGrad  Input Detector
v & - ., .. '),.‘. > 4 -
- Wgiet £y e
& B A B N & B
Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, lan J. Goodfellow, Moritz Hardt, Been
Kim: Sanity Checks for Saliency Maps. NeurlPS 2018: 9525-9536
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Explanation in different Al fields

* Machine Learning
* Computer Vision
e Search and Constraint Satisfaction

Explanations

(1234, 0)

(123,4) (124, 3) (134, 2) (234,1)

[(l:',u)][(ls}zuj (14.23)x (23, 14)x  (24,13)X (34, 12) X

1,234 2 134 3,124 (4,123)

Constraints relaxation

Ulrich Junker: QUICKXPLAIN: Preferred Explanations and
Relaxations for Over-Constrained Problems. AAAI 2004:
167-172



Explanation in different Al fields

* Machine Learning
* Computer Vision
 Knowledge Representation and Reasoning

29 Novembre 2019
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Abduction Reasoning (in Bayesian Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)
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Diagnosis Inference

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-
Based Diagnosis of Discrete Event Systems: Theory and
Practice. KR 2012
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Explanation in different Al fields

Domain
=y

@ Agent(s)

* Machine Learning

\,

.« . Application Workd States Intelligent Strategy .
* Computer Vision o Domin sepeimaton jpmmd S S e

| SN

 Knowledge Representation and Reasuinnig roent Strateny S o
gent Strategy Summarization

Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization.

* Multi-a ge nt SySte ms AAMAS 2018: 1203-1207

Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van den Bosch, Catholijn M. Jonker,

29 Novembre 2019 _BDA Zd@/}d%s Ch. Meyer: Do You Get It? User-Evaluated Expla]_réaclgberel?a%%%%rlgcfhal%ﬁeTEP 2010: 28-39



Explanation in different Al fields

S s s> s<l

R
* Machine Learning

_0000-0

* Computer Vision

 Knowledge Representation and Reasoning

* Multi-agent Systems
* NLP

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)
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Explanation in different Al fields

* Machine Learning
* Computer Vision

 Knowledge Representation and Reasoning

* Multi-agent Systems
* NLP
* Planning and Scheduling

gA gA 9B gA
(b) (c) (d)

Human-in-the-loop Planning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)



Explanation in different Al fields

* Machine Learning
* Computer Vision

Robot: I have decided to turn left.
Human: Why did you do that?

Robot: [ believe that the correct action is to turn left
BECAUSE:
I'm being asked to go forward
AND This area in front of me was 20 cm higher than me
*highlights area™

* Knowledge Representation and Reasoning (han 5 om *highlights arear T oS

* Multi-agent Systems
* NLP

* Planning and Scheduling
* Robotics

29 Novembre 2019
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AND I'm tilted to the right by more than 5 degrees.
Here is a display of the path through the tree that lead to
this decision. *displays tree*

Human: How confident are you in this decision?

Robot: The distribution of actions that reached this leaf
node is shown in this histogram. *displays histogram*
This action is predicted to be correct 67% of the time.

Human: Where did the threshold for the area in front come
from?

Robot: Here is the histogram of all training examples that
reached this leaf. 80% of examples where this area was
above 20 cm predicted the appropriate action to be “drive
forward”.

From Decision Tree to human-friendly information

Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent
Robots. AAAlI Workshops 2017

Lecture on Explainable Al



Summarizing: the Need to Explain comes
from ...

* User Acceptance & Trust [Lipton 2016, Ribeiro 2016, Weld and Bansal 2018]
* Legal
* Conformance to ethical standards, fairness
* Right to be informed [Goodman and Flaxman 2016, Wachter 2017]
* Contestable decisions
¢ EXpla natO ry Debugglng [Kulesza et al. 2014, Weld and Bansal 2018]

* Flawed performance metrics
* Inadequate features
* Distributional drift

* Increase Insightfulness [Lipton 2016]

* Informativeness
* Uncovering causality [Pearl 2009]



More ambitiously, explanation as
Machine-Human Conversation Weld and Bansal 2015

G H: Why? H: (Hmm. Seems like it might H: What happens if the
/ C: See below: be just recognizing anemone background
- texture!) Which training anemones are f
examples are most influential removed? E.g., Q
to the prediction?
| C: These ones:
ML Classifier C: I still predict
‘ Green regions argue FISH. because
for FISH, while RED of these green
C. I/)I'('(/I('l FISH /)ll.\/h'.\' towards DOG. '\“/)(,’,/”-“(,/'\..
There's more green.

- Humans may have follow-up questions
- Explanations cannot answer all users’ concerns

29 Novembre 2019 - BDA 2019/2020 https://xaitutorial2019.github.io/



Role-based Interpretability

“Isthe-explanation-interpretable?” = “To whom is the explanation interpretable?”

No Universally Interpretable Explanations!

* End users “Am | being treated fairly?”
“Can | contest the decision?”

“What could | do differently to get a
positive outcome?”

* Engineers, data scientists: “Is my system
working as designed?”

* Regulators “ Is it compliant?”

An ideal explainer should model the user
background.

Creators

A

Machine
learning
system

|
|
v

Data-subjects

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

Examiners

E—E—&

Operators Executors Decision-
subjects

[Tomsett et al. 18]



Evaluation: Interpretability as Latent Property

* Not directly measurable!

* Rely instead on measurable outcomes:
* Any useful to individuals?
e Can user estimate what a model will predict?
* How much do humans follow predictions?
 How well can people detect a mistake?

* No established benchmarks P /|

* How to rank interpretable models? Different degrees of

interpretability?

"
Interpretability



Explainable Al Systems

Black-box System

Transparent-by-design systems Ej_. R

Input Data

"
Interpretability Transparent System

Black-box
Post-hoc Explanation (black-box ASysten
explanation) systems Ej_’i ,
\ Explanation

Input Data

—_— I
[Mittelstadt et al. 2018]

Explanation Sub-system
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(Some) Desired Properties of Explainable Al
Systems

* Informativeness

* Low cognitive load

e Usability

* Fidelity

* Robustness

* Non-misleading

* Interactivity /Conversational

[Lipton 2016, Doshi-velez and Kim 2017, Rudin 2018, Weld and Bansal 2018, Mittelstadt et al. 2019]



(thm) XAl is interdisciplinary

* For millennia, philosophers have
asked the questions about what
constitutes an explanation, what
is the function of explanations,
and what are their structure

* [Tim Miller 2018]

Social
Science

Human-Agent
Interaction

Artificial | T~ _ Human-Computer
Intelligence \\ Interaction
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Explainable Machine Learning



What is a Black Box Model?

‘ A black box is a model,

x2 —_ whose internals are either

- unknown to the observer or
they are known but

x4 —

uninterpretable by humans.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box
models. ACM Computing Surveys (CSUR), 51(5), 93.
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COMPAS recidivism black bias

DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest b
without violence ¢
| Subsequent Offenses
®  3drug possessions Subsequent Offenses
i None

LOW RISK 3 HeHrRsk 10

Fugett was rated low risk after being arrested with cocaine and
29 Novembre 2019 marijuana. He was arrested three timeson drug charges after that.
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for restricted minority neighborhoods

Source: Bloomberg analyis of data from Amazon.com

and the American Community Survey
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The background bias

' (a)Husky classified as wolf (b)Explanation

Ribeiro et al., KDD 2016
Lecture on Explainable Al
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Interpretability

* To interpret means to give or provide the meaning or to explain and
present in understandable terms some concepts.

* In data mining and machine learning, interpretability is the ability to
explain or to provide the meaning in understandable terms to a
human.

https://www.merriam-webster.com/

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2.



Dimensions of Interpretability

e Global and Local Interpretability:.
e Global: understanding the whole logic of a model
* Local: understanding only the reasons for a specific decision

e Time Limitation: the time that the user can spend for
understanding an explanation.

* Nature of User Expertise: users of a predictive model may have

different background knowledge and experience in the task.
The nature of the user expertise is a key aspect for IF i|

interpretability of a model. IEeil



Desiderata of an Interpretable Model

* Interpretability (or comprehensibility): to which extent the model
and/or its predictions are human understandable. Is measured with
the complexity of the model.

* Fidelity: to which extent the model imitate a black-box predictor.

* Accuracy: to which extent the model predicts unseen instances.

- Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

Fairness: the model guarantees the protection of groups against
discrimination.

Privacy: the model does not reveal sensitive information about people.

Respect Monotonicity: the increase of the values of an attribute either
increase or decrease in a monotonic way the probability of a record of
being member of a class.

Usability: an interactive and queryable explanation is more usable than
a textual and fixed explanation.

Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.

Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on
privacy preserving data mining. SpringerPlus .

Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.



Desiderata of an Interpretable Model

Reliability and Robustness: the interpretable model should maintain
high levels of performance independently from small variations of the
parameters or of the input data.

Causality: controlled changes in the input due to a perturbation should
affect the model behavior.

Scalability: the interpretable model should be able to scale to large
input data with large input spaces.

Generality: the model should not require special training or restrictions.



Recognized Interpretable Models

1st, 2@ survived | PREDICTION: p(survived = yes | X) = 0.671
female Pclass? OUTCOME: YES

/ 3% not survived | Feature contribution Value

sex?
y survived Fuass -0.344 3rd
male age? Age -0.034 52
>A not survived Sex | 1.194 female
Decision Tree Linear Model

if conditiony A conditions A conditions then outcome

Rules
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Complexity

* Opposed to interpretability. * Linear Model: number of non
zero weights in the model.

* |s only related to the model and not
to the training data that is unknown. ¢ Rule: number of attribute-value
pairs in condition.

* Generally estimated with a rough
approximation related to the size of ¢ Decision Tree: estimating the
the interpretable model. complexity of a tree can be hard.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?: Explaining the predictions of any classifier. KDD.
Houtao Deng. 2014. Interpreting tree ensembles with intrees. arXiv preprint arXiv:1408.5456.
Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.
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Open the Black Box Problems

ol Wi .




Problems Taxonomy

OPEN THE BLACK

BOX PROBLEMS
BLACK BOX TRANSPARENT
EXPLANATION | < ~ | BOXDESIGN
| 11
MODEL OUTCOME » MODEL

EXPLANATION EXPLANATION INSPECTION
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XbD — eXplanation by Design %

TRANSPARENT
BOX DESIGN

29 Novembre 2019 - BDA 2019/2020 https://xaitutorial2019.github.io/



BBX - Black Box eXplanation

BLACK BOX
EXPLANATION

MODEL
EXPLANATION

|||

29 Novembre 2019

OUTCOME
EXPLANATION

- BDA 2019/2020
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INSPECTION
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ML Problem

TRAINING
SET

X =1{Xy, -y X, }
TEST

BLACK BOX
LEARNER

»| BLACK BOX

SET

29 Novembre 2019
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PREDICTION

https://xaitutorial2019.github.io/



Model Explanation Problem

4

Provide an interpretable model able to mimic the overall logic/behavior of
the black box and to explain its logic.

TEST
INSTANCES

BLACK BOX

—> GLOBAL

X=1{xXq, e, X, }

29 Novembre 2019

INTERPRETABLE

PREDICTOR

- BDA 2019/2020

R, : IFHOutlook = Sunny) AND
(Windy= False) THEN Play=Yes

R, : IHOutlook = Sunny) AND
(Windy= True) THEN Play=No

R, : IFQutlook = Overcast)

THEN Play=Yes

R, : IFOutlook = Rainy) AND
(Humidity= High) THEN Play=No

R; : IFOutlook = Rainy) AND
(Humidity= Normal) THEN Play=Yes

https://xaitutorial2019.github.io/



Outcome Explanation Problem .’

Provide an interpretable outcome, i.e., an explanation for the outcome of
the black box for a single instance.

INTERPRETABLE
TEST R,: IF(Outlook = Sunny) AND
INSTANCE BLACK BOX LOCAL I (Windy= False) THEN Play=Yes
PREDICTOR
X

29 Novembre 2019 - BDA 2019/2020 https://xaitutorial2019.github.io/



Model Inspection Problem '

Provide a representation (visual or textual) for understanding either how the
black box model works or why the black box returns certain predictions

more likely than others.

TEST VISUAL - ;
INSTANCES > BLACKBOX | | RepRENTATION |T T ¢ -
X=1{Xy, e, X, } %5 a e uule

29 Novembre 2019 - BDA 2019/2020 https://xaitutorial2019.github.io/



Transparent Box Design Problem

Provide a model which is locally or globally interpretable on its own.

TRAINING INTERPRETABLE INTERPRETABLE R, : IHOutiook = Sunny) AND
’ B b > 9 | (Windy= False) THEN Play=Yes
SET LEARNER PREDICTOR R, : IFDutlook = Sunny) AND
- yrﬁ){g 'It'lruellTHgN Play; No
—_— ’ UtiooK = Uvercas
X={Xqy, s X} THEN Play=Yes
R, : IF(Outlook = Rainy) AND
TEST (Humidity= High) THEN Play=No
. . R; : IF{Outlook = Rainy) AND
INSTANCE (Humidity= Normal) THEN Play=Yes
X

29 Novembre 2019 - BDA 2019/2020 https://xaitutorial2019.github.io/



: : o __re
Categorization |, .,
¢ /. 000
* The type of problem
* The type of black box model that the explanator is able to open

* The type of data used as input by the black box model

* The type of explanator adopted to open the black box

29 Novembre 2019 - BDA 2019/2020 https://xaitutorial2019.github.io/



Black Boxes K .,
¢ /. o000
* Neural Network (NN)

* Tree Ensemble (TE)

e Support Vector Machine (SVM)
* Deep Neural Network (DNN)

29 Novembre 2019 - BDA 2019/2020 https://xaitutorial2019.github.io/



Types of Data

Table of baby-name data
(baby-2010.csv)

Field
name rank gender year e mas
Jacob 1 b 2010

oy "‘-. One row
Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010
Sophia 2 girl 2010
Michael 3 boy 2010
. L .
. 0 H
' 2000 rows H '
. all told o .
. n .
Tabular )

(TAB)
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Explanators QK _ .,
- ¢ — . 000
* Decision Tree (DT)

» Decision Rules (DR)

e Features Importance (Fl)
 Saliency Mask (SM)

* Sensitivity Analysis (SA)
 Partial Dependence Plot (PDP)
* Prototype Selection (PS)

e Activation Maximization (AM)
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Reverse Engineering

* The name comes from the fact that we can only observe
the input and output of the black box.
* Possible actions are:
* choice of a particular comprehensible predictor

 guerying/auditing the black box with input records
created in a controlled way using random perturbations
w.r.t. a certain prior knowledge (e.g. train or test)

Input Output

* |t can be generalizable or not:
* Model-Agnostic
* Model-Specific
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Model-Agnostic vs Model-Specific

TEST RANDOM DATA
e rerruresaion B »| BLACKBOX |r »| PREDICTION
independentI ;
INTERPRETABLE INTERPRETABLE ORACLE
PREDICTOR | | LEARNER |[* 4
e, e |
TEST ' | RANDOM DATA ;
INSTANCES| * | PERTURBATION | | BLACKBOX === PREDICTION :
: :
: dependent :
| |
INTERPRETABLE | . INTERPRETABLE LEARNER ORACLE |
PREDICTOR ! I
| |

——————————————————————————————————————————
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- o - o ~ o “ -
s s & s & 05 & 8§ o §
s & 0§ fF 5 F s & F F o §
& D Q Y
Trepan [22] Craven et al. 1996 DT NN TAB v v
_ (577  Krishnanetal. 1999 DT NN TAB v v v
DecText [12] Boz 2002 DT NN TAB v v v
GPDT [46] Johansson et al. 2009 DT NN TAB v v v v
Tree Metrics  [17] Chipman et al. 1998 DT TE TAB v
CCM [26] Domingos et al. 1998 DT TE TAB v v v
- [34] Gibbons et al. 2013 DT TE TAB v v
STA [140] Zhou et al. 2016 DT TE TAB v
CDT [104] Schetinin et al. 2007 DT TE TAB v
— 38 Hara et al. 2016 DT TE TAB
TSP
Conj Rules
G-REX
REFNE [141] Zhou et al. 2003 DR NN TAB v v v v
RxREN [6] Augasta et al. 2012 DR NN TAB v v v
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Global Model Explainers

* Explanator: DT R, : IFDutlook = Sunny) AND
* Black Box: NN, TE (Windy= False) THEN Play=VYes
* Data Type: TAB R, : IHOutlook = Sunny) AND
(Windy= True) THEN Play=No
* Explanator: DR TRﬁE:\T gg‘i%t: g
* Black Box: NN, SVM, TE R, : IF{Dutlook = Rainy) AND
* Data Type: TAB (Humidity= High) THEN Play=No
R; : IHOutlook = Rainy) AND
- Explanator: FI (Humidity= Normal) THEN Play=Yes

* Black Box: AGN
* Data Type: TAB
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Tre pa n — D-l_, N N’ TAB (765 - UniformityCellSize < 2.5 mﬂ

Denign ignant

o e

BareNuclei < 4.5 ~——UniformityCellShape < 2.5

01 T = root of the tree() @
02 Q = <T X {}> ~UniformityCellSize < 4.5
03 while Q not empty & size(T) < limit @
04 N XN’ CN = pOp(Q) BareN::/:eRz.S
05 Zy = random(Xy, Cy) |
06 Bleckbox v} = b(z), y  b(k,) @ o E
07 auditing  jf same class(y U y,) o ) Gl @) U
08 continue
09 S = best split(Xy, U Zy, v U vy,)
10 S’'= best m-of-n split(S)

11 N update with Spllt(N S')

12 for each condition ¢ in S’

13 C = new child of(N)

14 C. = CN U {c}

15 X. = select with constraints(Xy, Cy)
16 put(Q, <C, X., C.>)

- Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.
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RXREN -bRr NN, TAB

01 prune insignificant neurons

02 for each significant neuron

03 for each outcome

O4l: Z;’;ﬂi‘;‘—» compute mandatory data ranges | —

05 for each outcome

06 build rules using data ranges of each neuron

07 prune insignificant rules

08 update data ranges in rule conditions analyzing error

if ((data(l}) > L1z Adata(l}) < Ujz) A (data(lp) > Loz Adata(lp) < Uxz) A
(data(I3) > L33z Adata(I3) < U3zz)) then class =C3

else

if ((data(l1) > L11 Adata(l1) < Ui1) A (data(l3) = L3y Adata(13) < Uzy))

then class =C}
- M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012.

Reverse engineering the neural networks for rule

extraction in classification problems. NPL. class = C
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Software disponibile

e LIME: https://github.com/marcotcr/lime
 MAPLE: https://github.com/GDPlumb/MAPLE
e SHAP: https://github.com/slundberg/shap
 ANCHOR: https://github.com/marcotcr/anchor
* LORE: https://github.com/riccotti/LORE

* https://ico.org.uk/media/about-the-ico/consultations/2616434/
explaining-ai-decisions-part-1.pdf




(Some) Software Resources

* DeepExplain: perturbation and gradient-based attribution methods for Deep Neural Networks interpretability.
github.com/marcoancona/DeepExplain

* iNNvestigate: A toolbox to iINNvestigate neural networks' predictions. github.com/albermax/innvestigate

* SHAP: SHapley Additive exPlanations. github.com/slundberg/shap

» ELI5: A library for debugging/inspecting machine learning classifiers and explaining their predictions.
github.com/TeamHG-Memex/eli5

» Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater

* Yellowbrick: Visual analysis and diagnostic tools to facilitate machine learning model selection.
github.com/DistrictDatalabs/yellowbrick

* Lucid: A collection of infrastructure and tools for research in neural network interpretability. github.com/tensorflow/lucid
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