## Performance evaluation in soccer

from **human** mechanisms to **data-driven** algorithms





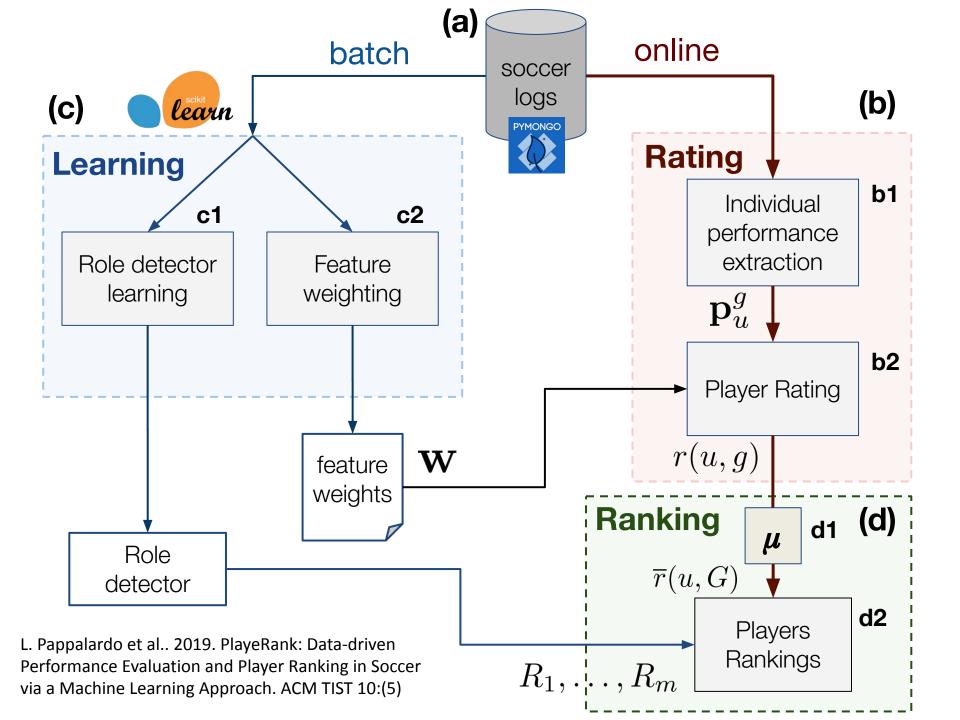


wyscout

# How to automatically evaluate performance?

solution:

imitate the human make it data-driven



#### Step #1: player performance

**14** million events

**150** technical features

**7,304** games

1,192 professional players



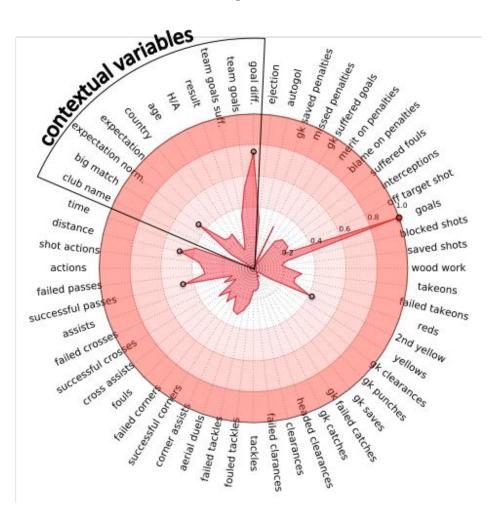


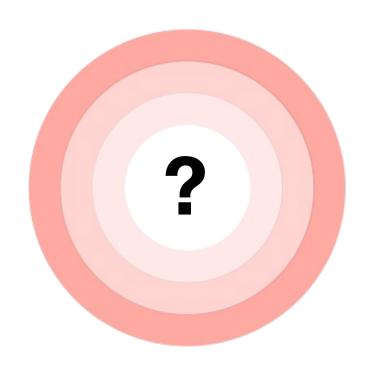






#### Step #2: feature weighting

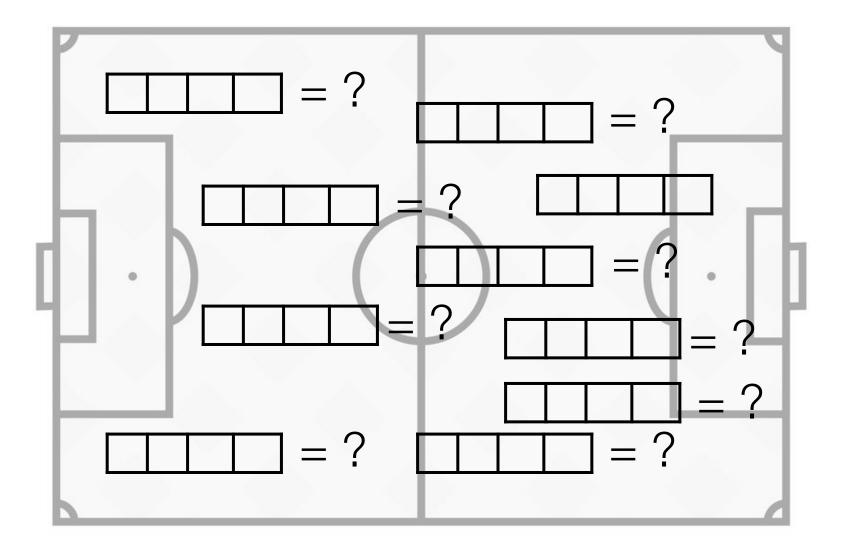




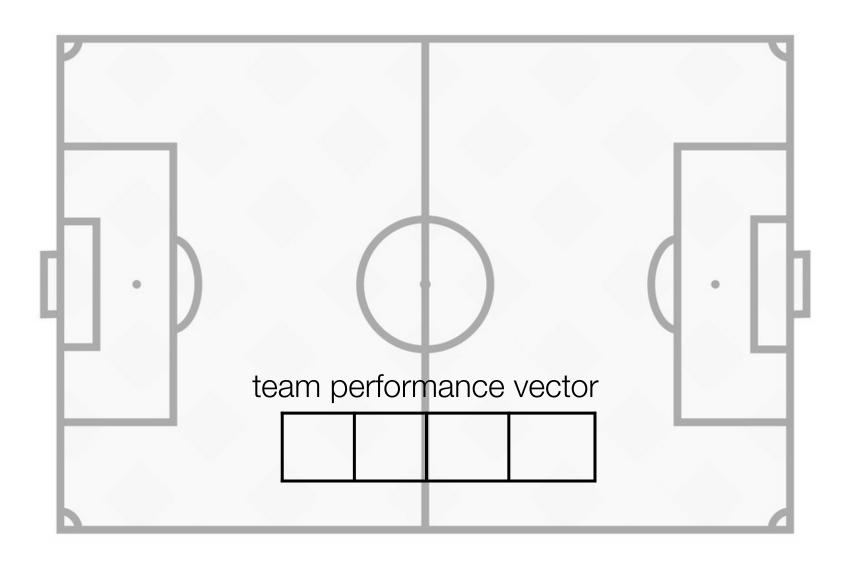
Human rating

Data-driven rating

#### Feature Weighting



#### Feature Weighting



#### Feature Weighting

team1



?

1X2

team2

| passes | хG | pressing | accuracy |  |
|--------|----|----------|----------|--|
|--------|----|----------|----------|--|

Pappalardo and Cintia, (2017) Quantifying the relation between performance and success in soccer, Advances in Complex Systems, doi:10.1142/S021952591750014X

#### Step #2: feature weighting

from pymongo import MongoClient

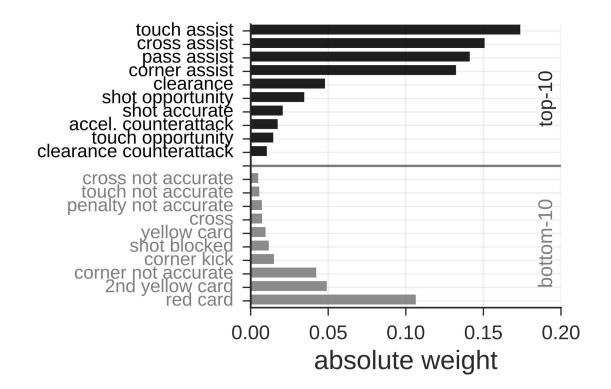
```
client = MongoClient('localhost', 27017)
events = client.wyscout.events
```

```
res = events.map_reduce(map_agg, reduce_sum)
X, y = extract_data(res)
```

| 10- | inaccurate<br>defending<br>duel | intercept | accurate<br>air duel | accelleration | corner<br>assist | missed<br>penalty | foul | corner<br>pass | accurate<br>defending<br>duel | cross<br>key<br>pass |     | outcome |
|-----|---------------------------------|-----------|----------------------|---------------|------------------|-------------------|------|----------------|-------------------------------|----------------------|-----|---------|
| (   | -8.0                            | 5.0       | 2.0                  | -1.0          | 0.0              | 0.0               | -3.0 | 1.0            | 12.0                          | 2.0                  | ••• | w       |
|     | 8.0                             | -5.0      | -2.0                 | 1.0           | 0.0              | 0.0               | 3.0  | -1.0           | -12.0                         | -2.0                 | ••• | n       |
| :   | <b>2</b> -7.0                   | -3.0      | 6.0                  | 0.0           | 0.0              | 0.0               | 5.0  | -1.0           | -10.0                         | 1.0                  | ••• | w       |
| ;   | 7.0                             | 3.0       | -6.0                 | 0.0           | 0.0              | 0.0               | -5.0 | 1.0            | 10.0                          | -1.0                 | ••• | W       |
| Ų,  | -13.0                           | -5.0      | 6.0                  | 1.0           | 0.0              | 0.0               | -6.0 | 1.0            | -13.0                         | -2.0                 |     | w       |

#### Step #2: feature weighting

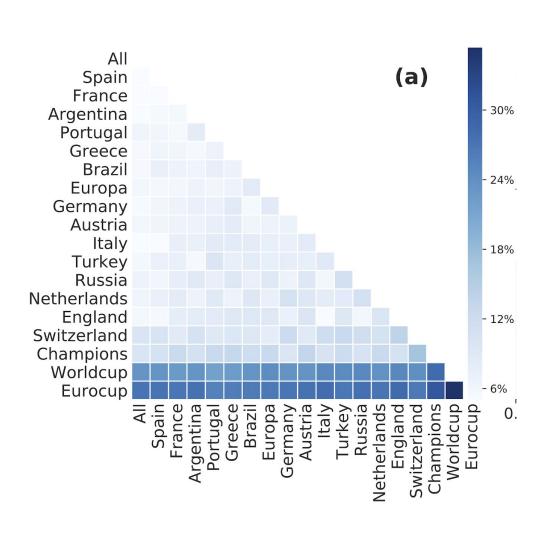
```
from playerank import Weighter
# perform the feature weighting
pw = Weighter()
pw.fit(X, y)
pw.weights
```

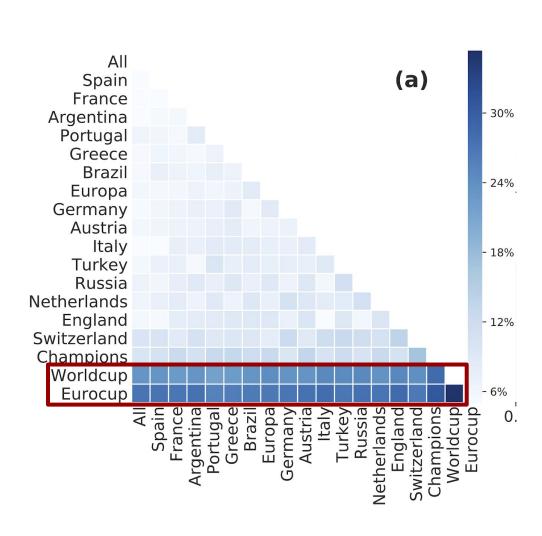


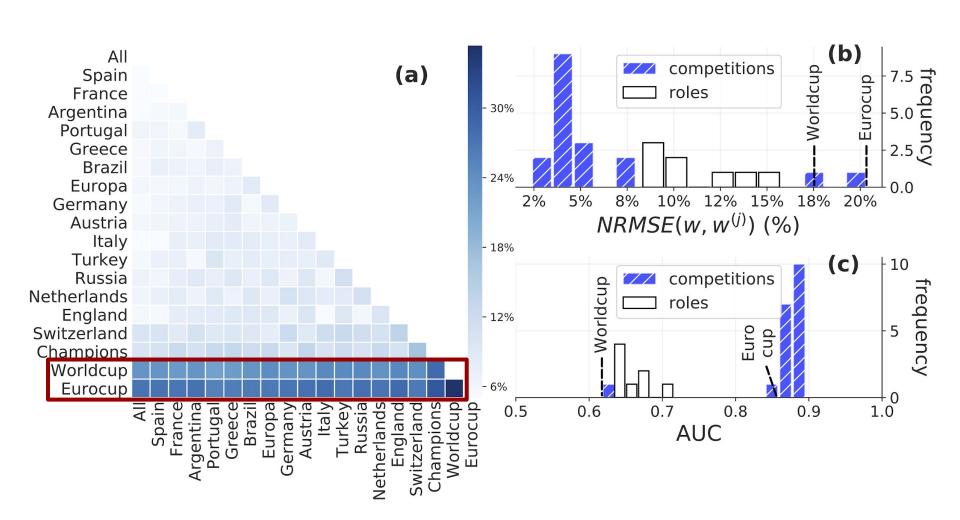
#### Evaluating the weights

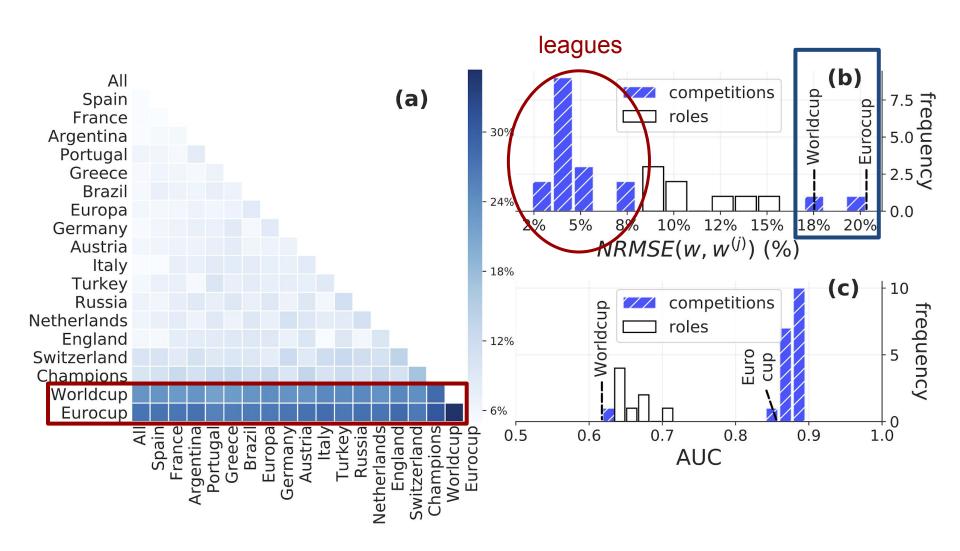
stability
 across competitions and roles

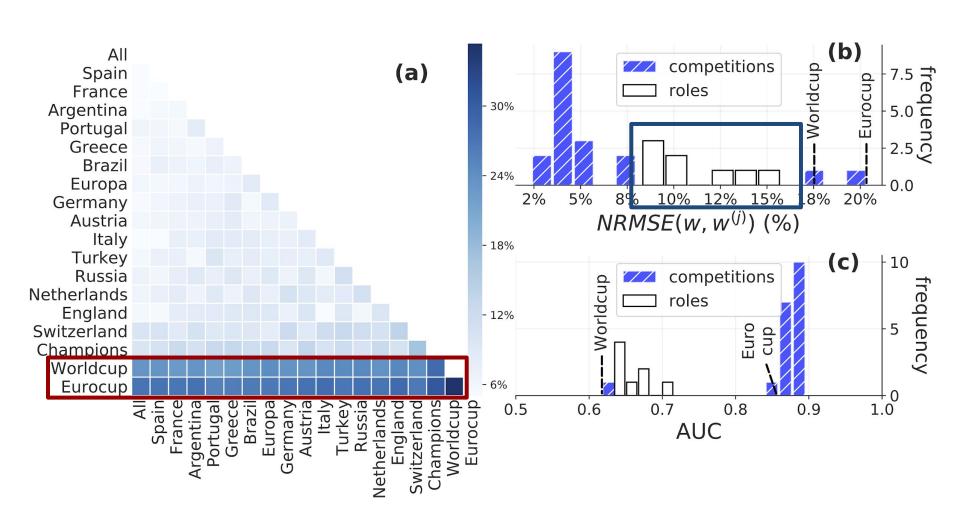
evaluation of resulting ranking









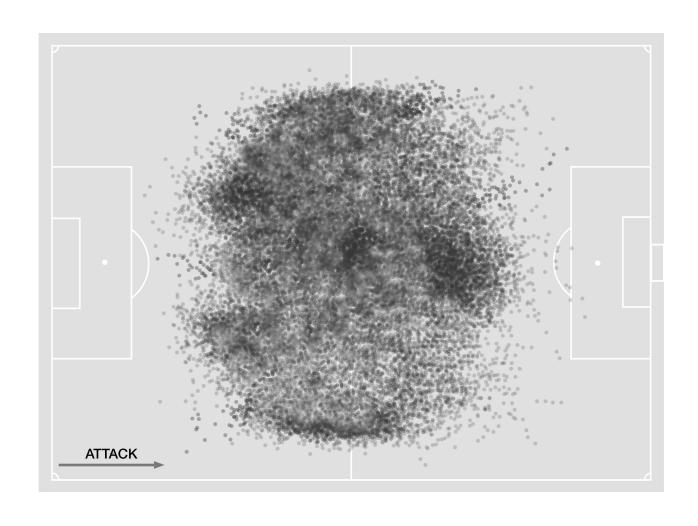


"All animals players are equal, but some animals players are more equal than others."

George Orwell

It is meaningless to compare two players with different roles

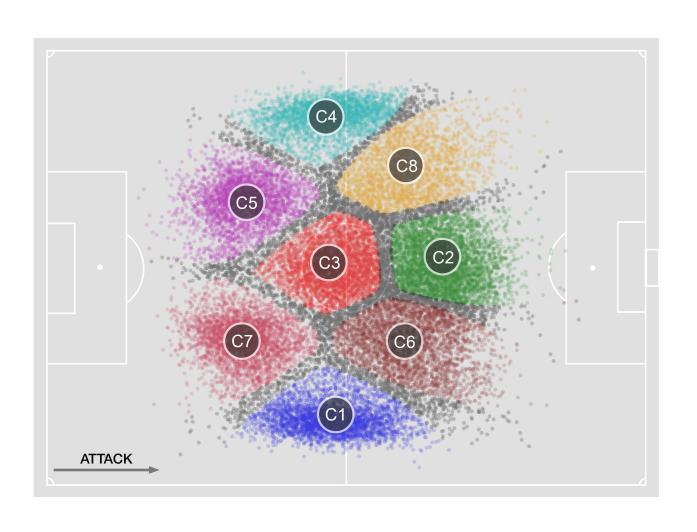
```
from pymongo import MongoClient
# load the centers data
res = events.aggregate(pipeline)
X = extract data(res)
```



from playerank import RoleClusterer

# perform multi-clustering
rc = RoleClusterer(k\_range=(2, 20),
 border\_threshold=0.2, random\_state=42)
rc.fit(X)
rc.labels

```
[[6], [2, 4, 6], [3], [6], [1], [5], [3], [4], [1], [6], [1], [0], [2, 5], [2], [7], [4], [5], [5], [0], [4], [5], [4], [6], [3], [5], [1], [6], [4], [0], [7], [1], [7], [2], [5], [7], [0, 5], ....]
```



#### Step #4: rating computation

performance rating of **u** in game **g** 

$$r(u,g) = \frac{1}{R} \sum_{i=1}^{n} w_i \times x_i$$

taking into account the number of goals

$$\alpha \times norm\_goals + (1 - \alpha) \times r(u, g)$$

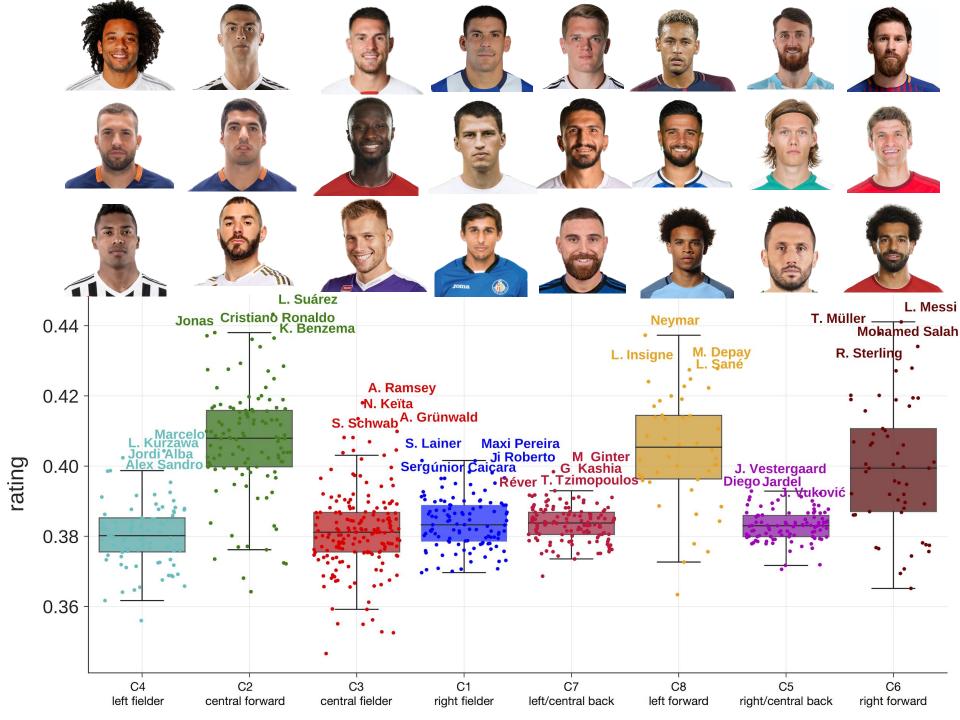
#### Step #4: rating computation

```
from playerank import Rater
res = events.map reduce(map aggregate, reduce sum)
X = extract data(res)
# rate the performances
rater = Rater(alpha=0.0)
rater.predict(X)
                             goals are not
```

considered

#### Step #5: player ranking

The ranking of players (by role) can be computed by aggregating over all ratings of the players



#### How to evaluate the evaluation?

algorithm





expert 1





expert 2





expert 3





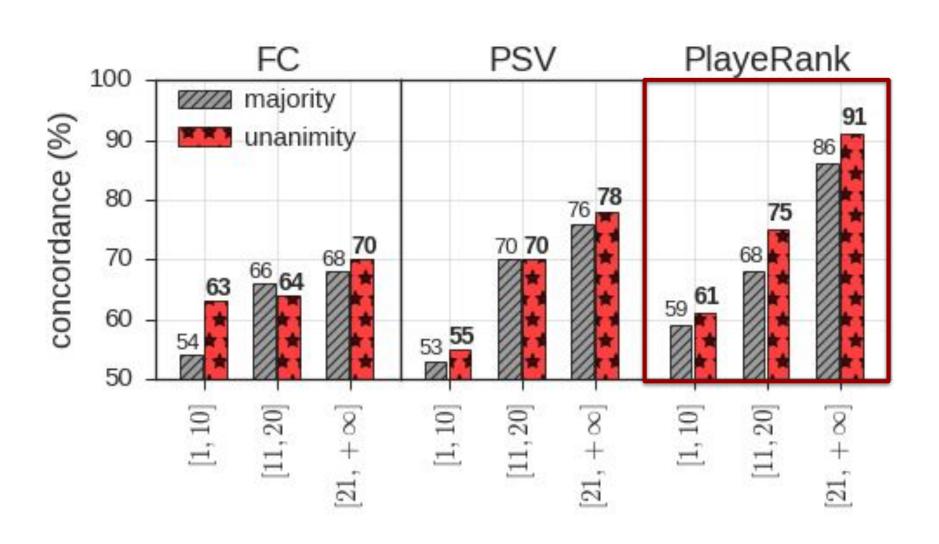
majority agreement



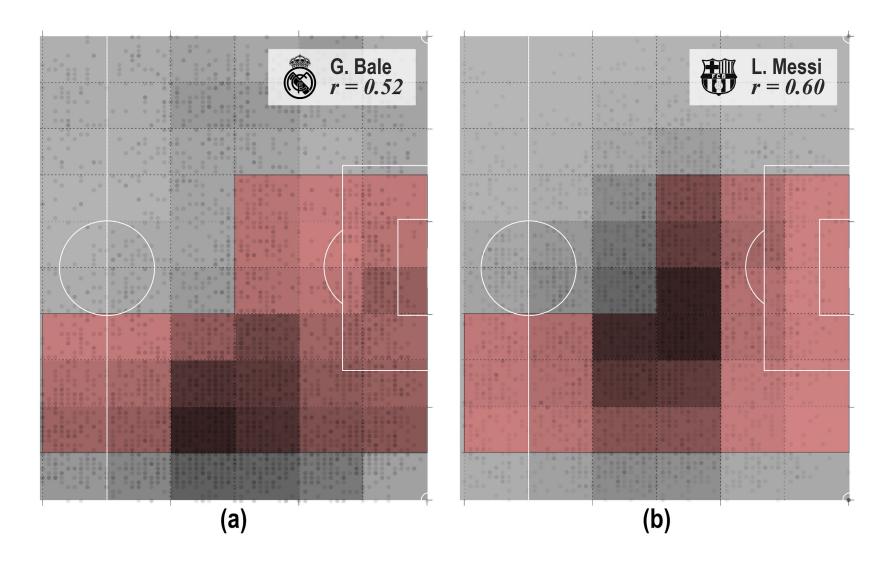
unanimity agreement



#### Evaluation of 211 pairs



#### Step #6: the search engine



#### Step #6: the search engine

|     | player        | $\hat{r}$ | r    | $  \overline{r}  $ | club      |
|-----|---------------|-----------|------|--------------------|-----------|
| 1   | L. Messi      | 0.28      | 0.60 | 0.46               | Barcelona |
| 2   | A. Robben     | 0.26      | 0.61 | 0.43               | Bayern M. |
| 3   | L. Suárez     | 0.24      | 0.54 | 0.45               | Barcelona |
| 4   | T. Müller     | 0.24      | 0.56 | 0.43               | Bayern M. |
| 5   | Mohamed Salah | 0.24      | 0.56 | 0.43               | Liverpool |
| 6   | R. Lukaku     | 0.24      | 0.56 | 0.42               | Man. Utd  |
| 7   | A. Petagna    | 0.23      | 0.55 | 0.42               | Atalanta  |
| 8   | D. Berardi    | 0.22      | 0.54 | 0.41               | Sassuolo  |
| 9   | Aduriz        | 0.22      | 0.55 | 0.40               | A. Bilbao |
| _10 | G. Bale       | 0.22      | 0.52 | 0.43               | R. Madrid |



#### **Coming soon:**

Soccer Data Challenge @InternetFestival, Pisa, 12-13 October 2018 http://www.internetfestival.it/



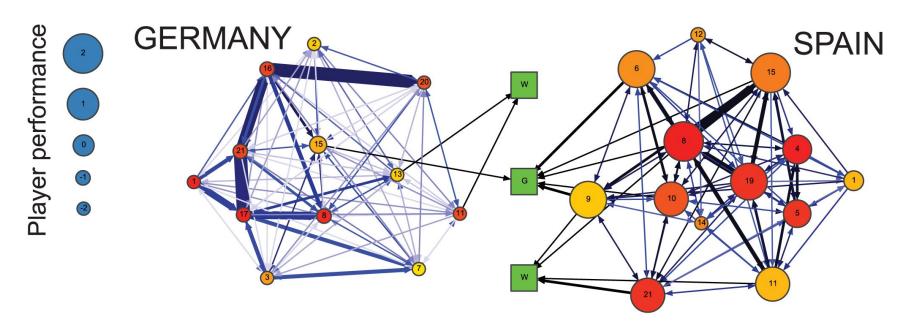




wyscout

### Flow Centrality (FC)

Duch et al. (2010) Quantifying the Performance of Individual Players in a Team Activity. PLoS ONE 5(6): e10937.

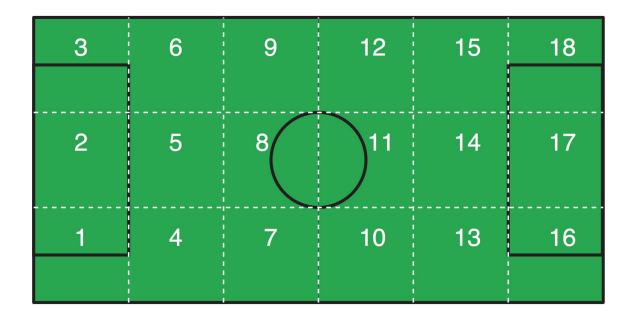


fraction of a player's accurate shots

**Validation**: 8 of the 20 players in the list of the competition's best players

#### Pass Shot Value (PSV)

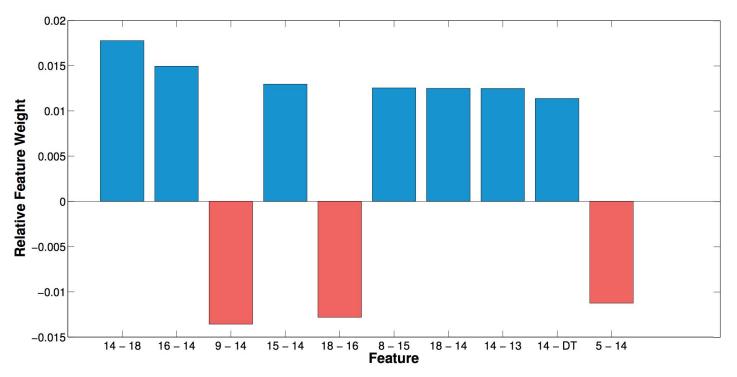
Brooks et al. (2016) Developing a Data-Driven Player Ranking in Soccer using Predictive Model Weights, SIGKDD



each pass is represented as a vector size=360

#### Pass Shot Value (PSV)

Brooks et al. (2016) Developing a Data-Driven Player Ranking in Soccer using Predictive Model Weights, SIGKDD



predicting if a possession ends in a shot

Validation: correlation with assists and goals