
DW: Data Models, A. Albano
1

OPEN LAB: HOSPITAL

An hospital needs a DM to extract information from their operational database with
information about inpatients treatments.

1.  Total billed amount for
hospitalizations, by diagnosis code and
description, by month (year).

2.  Total number of hospitalizations and
billed amount, by ward, by patient
gender (age at date of admission, city,
region).

3.  Total billed amount, average length of
stay and average waiting time, by
diagnosis code and description, by name
(specialization) of the physician who
has admitted the patient.

4.  Total billed amount, and average
waiting time of admission, by patient
age (region), by treatment code
(description).

DW: Data Models, A. Albano

REQUIREMENTS SPECIFICATION

2

DW: Data Models, A. Albano
3

REQUIREMENTS SPECIFICATION

DW: Data Models, A. Albano
4

HOSPITALIZATIONS DATA MART CONCEPTUAL SCHEMA

DATA BASE DATA MART

DW: Data Models, A. Albano
5

SUMMARY

The analysis-driven design of a data mart.

Business questions
For a data subsets to use,
 the metrics to compute,
 grouping data by dimensions (attributes),
 how the result should be presented.

SELECT X FROM … WHERE B GROUP BY Y ORDER BY W

Alternative: Types of reports to be produced

Data availability

Facts granularity, measures and their types, dimensions

DW: Data Models, A. Albano
6

MORE ABOUT DATA MART CONCEPTUAL MODELLING

Facts descriptive attributes

Optional dimensions or attributes

Multivalued dimensions

Hierarchies types

Shared hierarchies

Degenerate dimensions

DW: Data Models, A. Albano
7

RELATIONAL MODEL

Relational OLAP systems are relational DBMS extended with specific
features to support business intelligence analysis.

A DW is represented with a special kind of relational schema

 A star schema,

 A snowflake schema or

 A constellation schema.

DW: Data Models, A. Albano
8

A STAR SCHEMA EXAMPLE

In a data mart relational schema a dimension table always uses a system-generated
primary key, called a Surrogate Key, to support Type 2 technique of slowly
changing dimensions. And the fact table key?

DW: Data Models, A. Albano
9

SNOWFLAKE SCHEMA

DW: Data Models, A. Albano
10

CONSTELLATION SCHEMA

DW: Data Models, A. Albano
11

THE DATE DIMENSION

In the logical schema,
the dimension Date has the surrogate key
with the integer value

YYYYMMDD

Hyp: Date at daily grain

Attribute Name Type Format/Example

DatePK int YYYYMMDD

Month int YYYYMM

Quarter int YYYYQ

Year int YYYY

WeekNumber int 1 to 52 or 53

DayInMonth int 1 to 31

DayOfWeek string Monday

MonthName string January

HolydayName string Easter

DATE

DW: Data Models, A. Albano
12

HOSPITALIZATIONS DATA MART CONCEPTUAL SCHEMA

DESIGN THE LOGICAL SCHEMA

DW: Data Models, A. Albano

HOSPITALIZATIONS: INITIAL LOGICAL SCHEMA

13

DW: Data Models, A. Albano

AIRLINE COMPANIES: REQUIREMENTS SPECIFICATION

14

DW: Data Models, A. Albano

AIRLINE COMPANIES: CONCEPTUAL AND LOGICAL
DESIGN

15

DW: Data Models, A. Albano
16

LOGICAL DESIGN: STAR SCHEMA + DIMENSIONAL HIERARCHIES

 A dimensional attributes hierarchy models attributes dependency,
i.e. a functional dependency between attributes, using the
relational model terminology.

 For example, the dimension Date has attributes Month, Quarter, Year.
Can we define a dimensional hierarchy among them?

Month → Quarter → Year

DW: Data Models, A. Albano
17

LOGICAL DESIGN: STAR SCHEMA + DIMENSIONAL HIERARCHIES

Month → Quarter → Year

20080101 1 1 2008

20080102 1 1 2008

...

20090101 1 1 2009

20090102 1 1 2009

20080101 200801 20081 2008

20080102 200801 20081 2008

...

20090101 200901 20091 2009

20090102 200901 20091 2009

Date

PkDate Month Quarter Year

PkDate → Month, Quarter, Year
Month → Quarter
Quarter → Year

 Attention to the attribute values !

DW: Data Models, A. Albano
18

EXERCISE: TEST DIMENSIONAL HIERARCHIES

 Date(PkDate, Month, Quarter, Year)

How to verify on the loaded table the validity of the hierarchy Month → Year ?

 Write a query that returns an empty result set
 if the functional dependency is valid.

WITH MonthYearSubquery AS
(SELECT DISTINCT Month, Year
FROM Date)

SELECT Month
FROM MonthYearSubquery
GROUP BY Month
HAVING COUNT(*) > 1;

SELECT Month
FROM Date
GROUP BY Month
HAVING COUNT(DISTINCT Year) > 1;

DW: Data Models, A. Albano

MISSING VALUES

•  How to code facts where the Customer is missing?

•  NULL for CustomerFK in fact table?

•  Surrogate key 0 models a special customer

•  «Customer not available», «City not available», «Region not available»

•  In the fact table, CustomerFK will be 0 for missing customers

19

DW: Data Models, A. Albano

DEGENERATE DIMENSIONS

•  Always stored in the fact table?

•  Space to store in the fact table is

•  [space(DD1) + … + space(DDn)]*NFacts

•  A junk dimension contains all possible combinations

of values of DD1, …, DDn

•  Space with a junk dimension is

•  space(JFK)*Nfacts +

 [space(JPK)+space(DD1) + … + space(DDn)]

 * NValues1 * … * Nvaluesn

•  Which solution is more convenient?

20

Fact

DD1
…
DDn

Fact Junk
dimension

JPK
DD1
…
DDn

JFK

DW: Data Models, A. Albano
21

LOGICAL DESIGN: CHANGING DIMENSIONS

Slowly changing dimensions

•  TYPE 2 (preserving the history)
•  Ex: Changing the address we do not want to lose the past ones

•  TYPE 3 (preserving one or more versions of history)

Fast changing dimensions

•  TYPE 4

•  Ex: Age

•  TYPE 1 (overwriting the history)
•  Ex: Change the lastname Rossi instead of Rosi due to errors

These aspects are not modelled in the conceptual schema

 Not recommended

Overwrite the value

Add a dimension row

Add new attributes

Add a new dimension
(called mini or profile)

DW: Data Models, A. Albano
22

LOGICAL DESIGN: TYPE 2 SLOWLY CHANGING DIMENSIONS

Dimensions with both a surrogate and a natural key

The Surrogate Key
changes: more surrogate
keys refer more instances
of the same customers

SSN does not change

CustomerPK SSN Name Zip

1 31422 Murray 94025

2 12427 Jones 10019

3 22224 Smith 33120

4 12427 Jones 45678

SQL: How many customer have made an Order greater than ... ?
COUNT(*) ?

Or COUNT(DISTINCT SSN) ?

The customer Jones moved from zip code of 10019 to 45678.

DW: Data Models, A. Albano
23

LOGICAL DESIGN: TYPE 2 SLOWLY CHANGING DIMENSIONS

•  Dimensions with a surrogate key only

The customer Jones moved from zip code of 10019 to 45678.

 CustomerPK InitialCustomerPK Name Zip

1 1 Murray 94025

2 2 Jones 10019

3 3 Smith 33120

4 2 Jones 45678

DW: Data Models, A. Albano

HOSPITALIZATIONS: FINAL LOGICAL SCHEMA

24

DW: Data Models, A. Albano
25

LOGICAL DESIGN: TYPE 3 SLOWLY CHANGING DIMENSIONS

Add new attributes to keep track of customer data change

The customer Jones moved from zip code of 10019 to 45678.

CustomerPK SSN Name Zip Old_Zip EffDate OldEffDate

1 31422 Murray 94025 3/1/2001 12/31/9999

2 12427 Jones 45678 10019 1/3/2008 10/10/2002

3 22224 Smith 33120 1/2/2002 12/31/9999

DW: Data Models, A. Albano
26

LOGICAL DESIGN: TYPE 4 FAST CHANGING DIMENSIONS

SMALL DIMENSIONS: Type 2 technique is still recommended

LARGE DIMENSIONS:

Create a separate dimension with frequently changing attributes

Numerical data must be converted into banded values

Insert in the new dimension all possible discrete attribute combinations
at table creation time

Order Customer Customer
Profile

Age
Income

DW: Data Models, A. Albano
27

LOGICAL DESIGN: RECURSIVE HIERARCHIES AND SQL

Total revenue for Agent 2 and for all his subordinates

Total revenue for Agent 2 and for all his supervisors

DW: Data Models, A. Albano

EXERCISE: WRITE THE RELATION AGENT

AgentPK Name SupervisorPK

1 Ag1 NULL

2 Ag2 1

3 Ag3 1

4 Ag4 2

5 Ag5 2

6 Ag6 3

7 Ag7 5

28

DW: Data Models, A. Albano
29

LOGICAL DESIGN: SHARED DIMENSIONS

Shared Hierarchies

Different Hierarchies Different tables

One table

DW: Data Models, A. Albano
30

LOGICAL DESIGN: RECURSIVE HIERARCHIES

DW: Data Models, A. Albano
31

LOGICAL DESIGN: RECURSIVE HIERARCHIES

The table ForTheHierarchy is defined with a record for
each element of the hierarchy plus one for each pair
(Supervisor, Subordinate)

(SupervisorFK, SubordinateFK)
is the Primary Key.

DW: Data Models, A. Albano
32

LOGICAL DESIGN: RECURSIVE HIERARCHIES

Total revenue for Agent 2
and for all her subordinates

DW: Data Models, A. Albano
33

SUMMARY

Finally, several controls are needed for the review of a project to improve the
quality of the conceptual and logical design, as described in the lecture notes.

Building a DW (conceptual and logical design, and data loading) is a complex task
that requires business skills, technology skills, and program management skills.

The logical design of a conceptual schema is not trivial, especially for treating
dimensions that change over time, multivalued dimensions and multivalued
dimensional attributes.

Next, another complex task is using a DW to translate the business
requirements into queries that can be satisfied by the DW.

DW: Data Models, A. Albano

OPEN LAB

•  Case Studies:

•  HOSPITAL

•  AIRLINE COMPANIES

•  AIRLINE FLIGHTS

•  INVENTORY

•  HOTELS

•  Design:

•  Conceptual model

•  Logical model

•  SQL queries to answer user requirements

34

