Databases Essentials

Antonio Albano

University of Pisa
Department of Informatics
Largo B. Pontecorvo 3, 56127 Pisa { Italy

albano@di.unipi.it

September 23, 2011






CONTENTS

1 Introduction 1
2 Database: The Conceptual Designer Perspective 5
21 WhattoModel . . ... ... .. .. 6
22 HowtoModel. .. ... ... . ... ... . ... 8
2.3 ODM: An Object DataModel . . . . .. .. ... ........ 8
231 Object. ... .. .. . .. e 8
232 Type . . . . e 9
233 Class. . . . . . . e 9
2.3.4 Relationship .. ...... ... ... .. .. .. ..., 10
2.3.5 Inheritance and Type Hierarchies . . . .. .. ... ... 11
2.3.6 Class Hierarchies . . . . ... ... ... ......... 11
2.4 EXErciSes . . . . . . . e e 14
3 Database: The Relational Designer Perspective 17
3.1 The Relational Data Model . . ... ... ... ......... 17
3.2 Relational Algebra . . . . ... ... ... ... .. .. ... . 19
3.2.1 Fundamental Operations . . . . . ... ... ....... 19
3.2.2 Additional Operations . . . . . ... ... ........ 21
3.2.3 Equivalencerules . . .. .. ... .. .. .. . ... 23
3.3 Relational Database Design: ODM-to-Relational Mappirg . . . 25
3.3 1 EXercises . . .. . .. ... 27
3.4 Relational Database Design: Normalization Theory . . . .. . . 27
3.4.1 Functional Dependencies. . . . .. .. ... ... .... 31
342 InferenceRules . . ... .. .. ... ... ... ... 32
343 ClosureofaSetof FDs . ... ... ........... 32
3.4.4 Covers of Sets of Dependencies . . ... ... ...... 33
3.4.5 Schema Decomposition. . . . ... ... ......... 34
3.4.6 Dependency Preserving Decomposition. . . . ... ... 35
3.4.7 Normalization Using Functional Dependencies . . . . . . 36
3.4.8 Polynomial Algorithms to Normalize in 3NF and BCNF 37
3.4.9 Multivalued Dependencies and Fourth Normal Form . . 38

3.4.10 EXErCISES . . . v v v v e e 40



ii CONTENTS ¢ A. Albano
4 DBMS: The User Perspective 43

4.1 ObjectivesofaDBMS . . .. ... ... .. ... ........ 43
4.2 FRunctionsofaDBMS . . ... ... ... ... ... ... 44
4.2.1 Separation of Data Description and Data Manipulation 44

4.2.2 Database Languages . . . .. ... ... ... ... ... 46
423 DataControl . .. ... ... ... .. . ... ... 46

4.2.4 A User-Accessible System Catalog . . . ... ... ... 48
4.2.5 Facilities for the Database Administrator . . . . . . .. 48

4.3 SQL: A Relational Database Language . . . . .. ... ... .. 49
4.3.1 The Data De nition Sublanguage . . . . . ... ... .. 49

4.3.2 The Query Sublanguage . . . ... ... ......... 51

4.3.3 Modifying Relation Instances . . .. ... ........ 54
4.3.4 Executing SQL Statements within Application Programs 55

435 EXercises . . . . . .. ... 57



Chapter 1

INTRODUCTION

The importance of information in today's society is widely recognized. In this
report, the attention will be focused particularly on the need for information
management inorganizations, considered as an organic collection of resources
(people and materials), tools and procedures, which are nlzed to create
and o er a product or a service. For example, a manufacturer onverts raw
materials into a nished product, a bank provides nancial services, and a
hospital supplies medical services.

Nowadays, information is considered to be a critical resouwre of any organi-
zation, as fundamental as capital or machinery, and, in fact the majority of the
labor force in the industrialized countries works in some wg with information.

Since organizations operate in a competitive environmenttheir information
must not only be accurate but must also be provided rapidly, h time to support
the decision processes. For this reason, all organizatiorsve a structure which
is dedicated to the management of information, theinformation system: an
organized collection of resources, people, and procedureasalized to collect,
store, process and communicate the information needed to gyport the on-
going activities.

Information can be represented as data, images, text, and voe. Clearly, dif-
ferent kinds of organizations will have di ering needs with respect to the types
of information they use. However, the attention here will be on information
represented asstructured data, shared by a variety of users within an organi-
zation, and managed using computers. Reductions in the costof computer
technology, improvements in performances, and new facilies to support the
development of applications have created an increasing deamd for data pro-
cessing systems. We use the terrmomputerized information systemto refer to
the hardware and software which is used for storing, retrieing, and processing
the information which supports the functions of an organizaion?.

When a computerized information system is implemented usig database
technology, it will consist of an operational databaseand a collection of appli-
cation programs (transactions) which are used to access and update the data
quickly and e ciently (Figure 1.1). The main goal of such a tr ansaction pro-
cessing system is to maintain the correspondence between dghdatabase and

1. Frequently in the literature, \information system" is us ed as synonym of \computerized
information system". Here, we prefer to make a distinction b etween the two terms to evi-
dence the fact that a \computerized information system" wil | never completly substitute
the global \information system" of an organization.



CHAPTER 1 Introduction ¢ A. Albano

the real-world situation it is modeling as events occur in the real world.

I"#$%&$'%

-6"79'&$"3

+:>500<;37<
$%&63@9&$"

X 0™+
"938$3H

.3453&"67

89:;3<=5%"96'5%

--1.1,0.12+

Figure 1.1 Transaction processing system

The data are under the control of aData Base Management SysteniDBMS),
a centralized or distributed software system, which provices the tools to de-
ne the database, to select the data structures needed to ste and retrieve the
data easily, and to access the data, interactively or by meas of a programming
language.

Another application domain in which databases play a key rok is Decision
Support The main goal of such applications is to turn the data into information
useful to support management decisions. Three categoried decision support
are reporting data, analyzing data and knowledge discoverywith data mining
techniques.

Decision support applications, sometimes callecbnline analytic processing
(oLAP), involve quite complex queries which cannot be e ciently executed
against operational databases, optimized foonline transaction processing(OLTP).
For this reason, organizations maintain a separate databas, calleddata ware-
house speci cally organized for such complex OLAP queries.

This report presents and discusses the principal topics inlie database area.
The emphasis is on the concepts underlying database languag, systems and
design. The discussion is organized into three main sectian database from
the designer perspective, DBMS from a user perspective, anBBMS from a
system perspective.

Section 4 presents introductory and fundamental concepts eégarding infor-
mation modeling. The problem of building a symbolic model ofthe knowledge
on some aspect of the world is addressed and an object formsitn is introduced
to de ne this model. The formalism is used to explain the bast concepts used
in the rest of the paper. The basic features of therelational model is also
presented. The emphasis will be on the relational model sire it has gained
wide acceptance among database researchers and practitiers and has a solid
theoretical basis. Moreover, an overview is given of the fudamental results of
normalization theory to design relational databases.

Section 3, DBMS from a user perspective, presents the fundainality of
a DBMS: the separation of database description and applicabn programs;
database languages; data control; facilities for the datahse administrator. A
large part of the presentation is devoted to the most importent feature charac-
terizing a DBMS: the data model it supports, i.e. the abstradion mechanisms



¢ A. Albano 3

used to model the databases. The basic features of the relatnal language
SQL are also presented to de ne and use databases. The inches of SQL
statements in a program written in a conventional programming language is
also discussed.



CHAPTER 1 Introduction ¢ A. Albano




Chapter 2

DATABASE: THE CONCEPTUAL
DESIGNER PERSPECTIVE

The notion of model is fundamental to all methods of analysisand design.
A model reproduces the essential characteristics of a real avld situation,
ignoring those details which would only represent an unnecgsary complication
with respect to the speci ¢ scope of the study being undertalen. A model is
used for explicative or descriptive purposes descriptive modeld, to predict
actions and events predictive modelg, or to provide recommended courses
of actions (normative modelg. Models are distinguished by their structure:
an iconic model retains some of the physical characteristics of the entitie
represented (e.g., a scale model car in a wind tunnel), whees a symbolic
model uses symbols to describe the real world. Symbolic models amgsed in
the analysis and design of information systems and we de nehltem as follows:

De nition 2.0.1 A symbolic modelis a subjective formal representation of
ideas and knowledge about a phenomenon.

Three fundamental aspects of this de nition must be underlined: a) a model is
a representation of only some aspects of a phenomenon; b) threpresentation
is given by a formal language; c) the model is the result of annterpretation
process which depends on the knowledge already possessedty interpreter.

Computer science o ers di erent formalisms which can be usd to build sym-
bolic models and, in particular, to represent information eectively, at varying
degrees of detail. Di erent features vary in signi cance at di erent levels of
abstraction. This is well illustrated, for instance, by a book of road maps. In
planning a route, a traveller will look at the front of the boo k which may well
list the major cities and the numbers of the page where more dailed informa-
tion can be found. Looking at the relevant page, he nds the mgor roads with
towns represented as shaded areas. At the back of the book, @éled street
maps which pinpoint the destination more closely are often éund. Clearly,
in this case, there is a need for each type of representatioraccording to the
particular problem to be solved.

We will thus rst consider the kind of knowledge for which we wish to build
a computerized information system, we will then show a grapltc formalism
which can be used to build models to analyze information sysms, i.e. to build
a static representation of the information content of a sysem, and nally we



CHAPTER 2 Database: The Conceptual Designer Perspective ¢ A. Albano

will present a formal language which can be used to implementhe model. The
emphasis will be on the construction of aconceptual model i.e. on a model
built using a formalism which is suitable for natural and direct modeling. The
examples in the following sections mainly refer to a simplied library or a
university administration system.

2.1 What to Model

When constructing a computerized information system, the eality to be mod-
eled is generally considered with respect taconcrete knowledge, abstract knowl-
edge, procedural knowledge, dynamigcsind communications.

Concrete knowledgeconcerns speci ¢ facts known of the system to be rep-
resented. Adopting a simpli ed point of view, we will assumethat the reality
consists ofentities, with certain characteristics or properties, and of relation-
ships betweenthe entities, which evolve over time.

De nition 2.1.1 An entity is anything for which certain facts should be recorded,
independently of the existence of other entities.

In a library administration system, for instance, examplesof entities can be a
bibliographic description, a book, a loan record or a user.

De nition 2.1.2 A property is a fact about an entity which is not meaningful
in itself, but only because it describes an entity of interes.

Examples of properties in a library are the user's name and adress. The dif-
ference between a property and an entity results from a di elent interpretation
of the represented fact in the model: properties are facts wich are of interest
only because they describe other facts which are consideresb entities.

Entities with the same properties are said to have the same tge and they
are classi ed into the same collection (called also entity set). For instance,
John, Mary, and Ann may be classi ed into the collection Persons based on
the fact that they have the same properties and represent hurans.

Collection of entities with the same type are certainly an important aspect
of the knowledge about the reality to be modeled, but much moe information
is carried by facts which establish associations among eriés.

De nition 2.1.3 A relationship is a fact which correlates independent entities.
As with entities, a collection of similar relationships is called relationship set

In the library, examples of relationships between entitiescan be the fact that
a bibliographic description refers to a book, or more than o book if more
than one copy of the same book exists, or the fact that the useSmith has
borrowed a copy of a particular book.

A relationship is usually binary, that is involves two entities, but in general
it may be n-ary. Moreover, several relationship sets might involve tre same
entity sets.

If we take a picture of a given time slice of the reality, the erities of interest,
the values of their properties and the relationships in whid they participate
constitute a state of this reality. In general, the reality undergoes changes
because entities are subjects of processes. These may betaarous processes
or discrete event processes such as a change in the addressafser, the loan
of a book, the acquisition of a new book, etc.



c A. Albano

2.1 What to Model 7

Abstract knowledgeconcerns general facts which impose restrictions on the
admissible values of the concrete knowledge and on the way imhich the values
of the concrete knowledge can evolve in time, or expressesles to derive new
information (integrity constraints ).

In the library, examples of abstract knowledge are (a) the usr proper-
ties Name, and Address which must have values of typestring, whereas the
BirthYear property will have values of type integer, (b) a book can be bor-
rowed for two weeks, and two one-week extensions are allowgid the extension
is performed before the due data, (c) any person may have on ém at most
ve books at any time; the title of a book cannot be changed (d)the age of a
person is computed as the di erence between the current yeaand the year of
birth.

Relationships usually have certain constraints that limit the possible corre-
lated entities. The most important ones are the so calledstructural constraints
or properties:

{ Cardinality , one or many, to specify how many entities of one collection
may be associated with entities of another collection.

{ Partecipation, total or partial, to specify whether an entity of one collection
can have entities of another collection associated to it.

For example, a book is borrowed by at most one person, but a pspn can
borrow several books (the relationship is saidne-to-many or 1:N). In contrast,

the relationship Appearsin between authors and bibliographic descriptions, in
which an author has written several books and a book has been nitten by

several authors, is said to bemany-to-many or N:M. A book must be related
to a bibliographic description (total), but a bibliographi ¢ description may not
be related to a library book (partial).

Procedural knowledgeconcerns the elementary actions (or operations) in
the application environment which are applied to concrete lnowledge to cause
changes. It must be understood that concrete knowledge is ajut the structure
of the entities and procedural knowledge is about theirbehavior Moreover,
while abstract knowledge imposes restrictions on possiblealues of concrete
knowledge, procedural knowledge imposes restrictions orhe possible ways in
which concrete knowledge can be used or modi ed.

Examples of elementary actions for a university student areenroll, graduate,
change address, and change telephone number.

Dynamics concerns how concrete and procedural knowledge can be usen t
model complex activities in the application environment.

Dynamics regards changes in the reality triggered by eventsand accom-
plished by standard procedures. An example of such a procede in a uni-
versity situation is: When a professor moves to another uniersity, then stop
salary; exclude the professor from mailing lists (usually nere than one); for
each course held by the professor, start procedure to assigrew professor; for
each commission of which the professor was a member, start cedure for
new nominations; etc.

Finally, communications concern how information is entered in the informa-
tion system and is exchanged among members of the organizati.

For the sake of simplicity we will not consider in the following, procedural
knowledge, dynamics and communications.



CHAPTER 2 Database: The Conceptual Designer Perspective ¢ A. Albano

2.2 How to Model

To construct a conceptual model of an information system we € ne the
schema a collection of time-invariant de nitions which model respectively
(a) the structure of admissible data, as well as integrity castraints, (b) the
procedural knowledge {ntensional aspecty. The creative part of conceptual
modeling is deciding what collection of entities, relatiorships, and constraints
to include in the schema to model the observed reality. So, tts modeling activ-
ity requires a good deal of creativity, technical expertise and understanding of
the application domain. After the conceptual schema has bee de ned, there
are straightforward ways of converting the design into an inplementation, as
it will be shown later.

Di erent formalisms, each supporting a speci ¢ data model, can be used to
de ne the conceptual schema.

De nition 2.2.1 A data modelis a set of abstraction mechanisms, with asso-
ciated operators and implicit integrity constraints, used to de ne a database
schema.

As a rst example of a data model, let us examine the features ba so-called
object data model (ODM), with abstraction mechanisms to model the user's
conceptualization of the application domain, naturally and directly. This kind
of data model was originally proposed as a formalism for the malysis and
design of information systems, but nowadays such model is s supported by
a new generation of DBMS, as it will be shown in Section 5.1.

2.3 ODM: An Object Data Model

The basic abstraction mechanisms of an object data model (OM) are: object,
type, class, relationship, inheritance, type hierarchies and class hierarchies
For simplicity, in this section we will only describe how structural aspects
of the reality can be modeled using a graphic formalism; in tle Section 5.1,
languages supporting the abstraction mechanisms of an obg¢ data model will
be shown, and examples of how to model procedural knowledgeillvalso be
given.

2.3.1 Object

An object is the computer representation of certain facts atwut an entity of
the observe world. An object is a software entity which has aninternal state
(instance variableg and it is equipped with a set of local operations (nethods
to manipulate that state. The request to an object to executean operation is
called a messageto which the object can reply. The structure of an object
state is modeled by a set of variables (orattributes) which can have values
of arbitrary complexity, including other objects which become components of
the object. When the state of an object can only be accessed dnmodi ed
through operations associated to that object, we say that tre object is adata
abstraction or that it encapsulateits state.

Finally, each object is distinct from all other objects and has an identity
that persists over time, independently of changes to the vale of its state, e.g.,
if X and Y are identi ers bound to objects of type T, X will be equal to Y if
they are bound to the same object. For instance, the object representing the



c A. Albano

2.3 ODM: An Object Data Model 9

person John is dierent from any other object representing another person,
but will remain the same even if his address or some other attbute changes.

2.3.2 Type

An object is an instance of a type de ned with a generative type constuctor
i.e. each object type de nition produces a new type, which isdi erent from
any other previously de ned types. An object type describesthe state elds
and the implementation of methods of its possible instancesAn object type
de nition introduces a constructor of its instances, and soan object can be
constructed only after its object type de nition has been given.

In the object programming context this approach to objects is called class-
based since the description of objects is called aclass we prefer the term
\type" since we will use \class" with a di erent meaning according to the
database tradition.

The signature +T of an object type T is the set of label-type pairs of the
messages which can be sent to its instances.

Each object is a value of a certain type and objects of the samiype have the
same properties, i.e. they have the same structure and the sae operations,
speci ed by the type de nition. The operations (the methods) to manipulate
the state are speci ed by giving a speci ¢ implementation (concrete behaviol)

The type mechanism makes it possible to create many objectsfahe same
type using an appropriate constructor.

Example 2.1 Figure 2.1 shows a graphic representation of type$. Attributes are
represented by the pair (Name : Type. Attributes can be multivalued (have a type seq
T; they can be optional, meaning that the value can be left unspeci ed. Methods are
represented by Name (Parameters) := Body).

' 1"#$%8&' )
"#$%& 0*+,

) (($%& 0"($
1234$+5"+,6",$'%& '$7&'()*+,
89+%)8:% ")

Figure 2.1 A graphic representation of object types

2.3.3 Class

An object data model supports a mechanism to de ne a collecton of homoge-
neous values to model multivalued attributes or collectiors of objects to model
databases. Usually two di erent mechanisms are provided:

1. To model multivalued attributes, type constructors are available for bags,
lists (or sequences), and sets. For the sake of simplicity weill only consider
sequences.

1. Currently there is no standard notation for an ODM model. M ost books use the ER
notation. We instead use a notation based on UML (Uni ed Mode lling Language).



CHAPTER 2 Database: The Conceptual Designer Perspective ¢ A. Albano

2. To model databases a mechanism calledlass is provided. A class is a
modi able sequence of objects with the same type. A class daition has
two di erent e ects:

{ Itintroduces the de nition of the type T of its elements and a construc-
tor for values of this type (intensional aspecy.

{ It supplies a name to denote the modi able sequence of the @ments of
type T currently in the database (extensional aspec}.

We assume that when an object with the type of the elements of alass is
constructed, then the object will itself become an element bthat class.

2.3.4 Relationship

Classes of objects model sets of entities of the observed vayrwhile relation-
ships between such entities of are represented with a sepdemechanism as
shown with the following axamples.

Example 2.2 Figure 2.2 shows a graphic representation of classes with érent level
of details: (a) class name only, (b) class name and the attribtes of its elements, and
(c) class name, the attributes of its elements together withtheir values type.

A binary relationship between classes is represented by arriented arc (Figure 2.3a).
The arc is labeled with the relationships name. A binary reldionship with attributes
is represented by a relationship class attached to the arc usg a dashed line (Fig-
ure 2.3b). The arcs may be labeled to clarify the role that enities play in the rela-
tionship: In this case the labels are used to name direct andniverse relationships; the
labels are mandatory in the case of recursive relationship@~igure 2.3c).

The graphic notation represents also the structural propeties of relationships: car-
dinality and partecipation, to model respectively how many elements of one class can
be associated with elements of another class and whether aeenent of one class can
have elements of another class associated to it. Multivalug relationships are repre-
sented graphically with a double arrow; optional relationships with a crossed line.

For example, a student might have passed zero or more examspyban exam result
must be associated to a student. Figure 2.4 shows a schema farlibrary information
system.

"#3%&$

"#$%8&$ "#$%8&$

"#$ 1"#$78 1+*(6

%8 ("H#S$ %8 ("#$78 1+%(6

"+ S )*+,-"+$78 0"+$

%3. %3$.78 98:;8<8=

/00'$11 /00'$1178 >8%+'$$+781+"*(6;

%234$(5"(68"6$1 B@(78 1+*(6A
%234%$(5"(6&"6$17 1$B81+*(6

C= D=

Figure 2.2 Graphic representation of classes



¢ A. Albano 2.3 ODM: An Object Data Model 11

FI"%S$

I"HSY68™ < S5 (), % 1"

"04

012213’ 1ot
[%21&
I
| e P A
: *71"8%2 *8<-$2%&
6'71"8%29:
&% ‘%

Figure 2.3 Graphic representation of relationships

2.3.5 Inheritance and Type Hierarchies

Inheritance is a mechanism which allows something to be de ed, typically an

object type, by only describing how it di ers from a previously de ned one.

Inheritance should not be confused with subtyping: subtypng is a relation

between types such that whenl S , then any operation which can be applied
to any value of type S can also be applied to any value of typel . The subtype
relation (IsA) is asymmetric, re exive and transitive.

The two notions are sometimes confused because, in objectlguages, inher-
itance is generally only used to de ne object subtypes, and bject subtypes can
only be de ned by inheritance. However, we will keep the two erms distinct
and will use each of them with its proper meaning.

Inheritance can be strict, when properties of the supertype can only be
rede ned in a controlled fashion, or non-strict, when they can be rede ned
freely. When inheritance is strict, we assume that propertes can be rede ned
only by specializing their type and thus a value of the subtype T; can be used
in all contexts in which an element of the supertypeT, is expected ontext
inheritance).

In a subtype de nition, a property of the supertype can be rede ned (over-
riding ), and its meaning in an object is then that given in the most specialized
type to which the object belongs (ate binding).

A subtype can be de ned from a single supertype $imple inheritance) or
from several supertypes fnultiple inheritance).

2.3.6 Class Hierarchies

This is an asymmetric, re exive and transitive relation in t he set of classes,
such that if (C1SubsetOfC,), then C; is said to be asubclassof C, and the
following properties hold:

a) The type of the elements ofC; is a subtype of the type of the elements of
C, (intensional constraint).

b) The elements of C; are a subset of the elements ofC, (extensional con-
straint ).

Example 2.3 If we are interested both in Personsand Students we have to model
two dierent and essential facts: the type of Students elements is asubtype of the



CHAPTER 2 Database: The Conceptual Designer Perspective ¢ A. Albano

5'+17'%

(&%-0+& 8-88%*+&
3+&4 N 3+&4
-
3raa >0+ [ 9.79%28-:$9<
=+'<&9;#9%."
5+ [ A 5+06%&
5'+6%8&
L+-&'>, =H<&9:+'
IHS%8: | (%9%)
/- %-.+0 1+2-&0'
%&EI* & | %-.! |
I I

Figure 2.4 A schema for a library

type Personselements, because all thgpossiblestudents are a subset of all thepossible
persons; the set of allactual Students is a subset of allactual Persons(i.e. the class
Studentds a subclassof the class Persong (Figure 2.5).

"#$%8&$
"#$%& 0*+,
) (I"($%& 0"($
1234$+5"+,6" $'%8& '$7&'()*+,
89+%$)8:% ")

|

O&($
1305%& *+(
<$*()"(*3+=$")% *+(
89+$)8:%& *(>1"

Figure 2.5 Subclasses

A subclass can be de ned from a single superclassi(nple inheritance) or from
several superclassegifultiple inheritance). Moreover on subclasses of the same
superclass can be de ned two kinds of constraintsoverlap and covering.

A no overlap constraints specify whether two subclasses areot allowed to
contain the same element. We denote this by drawing a small fack circle
(Figure 2.7b). In the absence of this constraint, we assumeybdefault that the
subclasses are allowed to contain same elements (Figure a)7

A covering constraints specify whether the objects in the sbclasses collec-
tively include all the elements in the superclass. We denot¢his by drawing the
hierarchy with a double line (Figure 2.7¢). In the absence othis constraint, we
assume by default that there is no covering constraint. Whenthe union of the
sets of the elements of the subclasses are disjoint and equal the set of the
elements of the superclass, we call the hierarchy generalization (Figure 2.7d).

A re ned library schema using subclasses is shown in Figure.8 with the
element attributes.

Usually there are two ways to populate subclasses:



c A. Albano

2.3 ODM: An Object Data Model 13

"#$%8&$

-.10%1"'$

'&P(#)*(%#$

Figure 2.6 Subclasses with multiple inheritance

"#$%&$

/\

H-"HS | | 0#"$123& | | 4#3()3+"$ |

01)+1"#$%&"()*+,-.,#,

"#$%&$

| 53# #-."#$ | |6#)78,#-."#$ | | 0*+$

| 51-+(#'&S$ |

I"489%6&"()*+21"4$ 01)+1"#$%&"()*+21"4%

Figure 2.7 Kinds of subclasses

- A subclass can be populated simply by creating elements wlt an appro-
priate constructor, and these elements will also appear aslements of its
superclasses, because of the extensional constraint of tiseibclass relation.

- A subclass can be populated also by moving objects from a s@pclass into
the subclass. Thus, objects can change the most specic clasto which
they belong during their life-time. For example, a person ca belong to the
subclass of students, then employees, and nally be just a prson again.

Because of the semantics of the extensional constraint of #gnsubclass relation,
when an object is removed from a class, it is also removed froiits subclasses;
but when it is removed from a subclass, it will remain in the siperclasses.

Subtype, inheritance, and subset are three dierent kinds d relations be-
tween types and values of an object languageSubtypeis a relation between
types which implies value substitutability; inheritance is a relation between
de nitions, which means that the inheriting de nition is sp eci ed \by di er-
ence" with respect to the super-de nition; subsetis a subset relation between
collections of objects, which also implies a subtype relatin between the types
of their elements. Languages exist that support only subtyges, or subtypes
and inheritance, or subtypes, inheritance and subsets.

Several alternative graphical notations have proposed fomodeling databases.
The most popular is the entity-relationship (ER) diagram, i ntroduced by Chen



CHAPTER 2 Database: The Conceptual Designer Perspective ¢ A. Albano
<.-2$.%
19(7- =("%4-'
s | T =2 HE %8 )<+
- +")"%0.
>'2. | @OT-A g &0+
[Lo% &0+ | )% &)+
101-)82.(% &'()*+
<. aF A <-78% 3.4(% >
<.-8%'
+h
23/%. ,
YK &?()*+ 2))-(.@0 1%%L.
$4)54.)8% &+ {>>{ /58))5"% &0+
AR 6578$091.(% )*
(:5%(0-7 -&(7.
19%"%4-".
$99% &0 ool |
<i(&&%  &(* P oido o !
[25%.8% & =>&()*+ e
6%%6'/>-"2
5%(01%%1.
[ 6/37-01. | | 8(+3%$/9 | C) Yoo A
[65.% &(*+ | [2@AB./25*% &(0*+ | .

Figure 2.8 A re ned schema for a library with element attributes

in the 1976 and later extended with hierarchies. More recery the Unied

Modeling Language (UML) is becoming the standard notation br object mod-
eling. Several tools also exists to specify diagrams, exartgs are:ERwin from
Computer Associates, ER/Studio from Embarcadero Technologies, andRe-
lational Rose from Rational Software for UML. In addition, DBMS vendors

provide their own design tools, such afracle Designer and Power Designer
from Sybase. Just to give an idea of the alternative graphichnotations, the
library schema in Figure 2.4 is shown in Figure 2.9 using the R notation.

2.4 Exercises

1. A university database contains information about profesors (identi ed by social
security number, or SSN) and courses (identi ed by courseidl Professors teach
courses; each of the situations described below concernsettTeaches relationship
set. For each of the following situations, draw a diagrams tlat capture this (as-
suming that no further constraints hold):

(a) Professors can teach the same course in several semesteand each o ering
must be recorded.

(b) Professors can teach the same course in several semesteand only the most
recent such o ering needs to be recorded. (Assume that thiss the case in all
subsequent questions.)

(c) Every professor must teach some course.

(d) Every professor teaches exactly one course (no more, neds).

(e) Every professor teaches exactly one course (no more, neds), and every course
must be taught by some professor.

(f) Now suppose that certain courses can be taught by a team gfrofessors jointly,
but it is possible that no one professor in a team can teach theourse. Model
this, introducing additional entity sets and relationship sets if necessary.



c A. Albano

2.4 Exercises

15

&H* T"#
"#$
89:

3%"4)%*

[

5,##*6"#
I"#$

89:2< =27">"0

"#$%

8;:2<

&)+,

89:;

3%"

3%"@*#

89:2<

3%"7@*#

4" #%=2

4?21 %

8;:2<

8;:2<

0"%/#-1*2%

B,%A*,2"7

&*HH*6"H#%

89:2<

89:2<

0"%/# ("%

&**C%

A*2

%

D"+ #7%

Figure 2.9 The library schema in ER

2. Let us assume that a company uses the following worksheebtstore data about

its computers.

InvNo  Model Description SeriaINo Cost UCode UName UPhone
111 SUN3 WS Sun ‘ajk078 25000 1 " John 576
112 PBG4 Notebook Mac a908m 6000 2 Ron 587
113 SUN3 WS Sun ajp890 27000 2 Ron 587
114 ThinkPad IBM PC ajp890 7000 3 Bob 588

The inventory number identi es a computer. A computer has a cost, a model,
a description and a serial number. Computers with the same mdel can have a
di erent cost, but have the same description. The serial nunber is di erent for the

computers with the same model. Each computer has a user, whoaa have several
computers, but only one phone number. A user has a code and a n#. Design a

conceptual schema for the database.

A bank database keeps track of loans, clients and montly paments to produce

reports of the kind shown in the Figure 2.10. A client may appl for several loans
and can have more than one approved loan. Design a conceptuathema for the

database.

LOAN REPORT

LOAN NUMBER: 250

LOAN DATA OF EXPIRY : 1/1/10
LOAN AMOUNT : 70.000,00
ANNUAL INTEREST RATE: 5%
No. OF PAYMENT MADE: 4
CURRENT BALANCE : 14.000

DATA: 7/2/02

CLIENT CODE: 2000
CLIENT NAME: Mario Rossi
CLIENT ADDRESS: Via Roma, 13 -Pisa

PAYMENT No PAYMENT DATA OF EXPIRY ~ AMOUNT  PAYMENT DATA
1 1/7/00 3.500 29/06/00
2 1/1/01 3.500 30/12/00
3 1/7/01 3.500 30/06/01
4 1/1/02 3.500 30/12/01

Figure 2.10 Loan report

4. Design a conceptual schema for a database to keep track otars and directors of
Ims. Each actor o director has a unique name, a birth year, ard a nationality. An




CHAPTER 2 Database: The Conceptual Designer Perspective ¢ A. Albano

actor may be also a director. Each Im has a title, the production year, the actors,
a director, and a producer. Films produced the same year havei erent titles.

. We would like to design a database to maintain the followirg facts. Trains are
either local trains or express trains, but never both. A train has a unique number
and an engineer. Stations are either express stops or localops, but never both.
A station has a name (assumed unique) and an address. All lotdrains stop at
all stations. Express trains stop only at express stationsFor each train and each
station the train stops at, there is a time. Design a conceptal schema for the
database.

. Consider the following information about a manufacturing company's parts and
suppliers database. The database contains information ahat the way certain parts
are manufactured out of other parts: the subparts that are involved in the manufac-
ture of a part, the number of subparts used, the cost of manufaturing a part from
its subparts, the mass of the part as result of the subparts asemblage. The man-
ufactured parts may themselves be subparts in a further mantacturing process.
In addition, certain information must be held on the parts th emselves: their code,
name and, if they are imported (i.e., manufactured externaly), the supplier and
the purchase cost. Suppliers have a code, a name, several ples and an address.
Design a conceptual schema for the database.

. Design a conceptual schema for a Company database to keegatk of a company's
employees, departments, and projects. The company is org&ed into departments.
Each department has a unique name, a unique number, a locatig and a manager
who is one of its employees. We keep track of the start date whethe employee
began managing the department. A department controls a numler of projects,
each of which has a unique name, a unique number. An employeeah a name, a
social security number, address, salary, sex (m or f), and bihdate. An employee
is assigned to one department but may work on several projest which are not
necessarily controlled by the same department. We keep trdcof the percent-time
that an employee works on each project. We also keep track ohee direct supervisor
of each employee, who belong to the same department, and thdast date when
the employee began acting as supervisor. We want to keep tr&oof the dependents
of each employee for insurance purposes. We keep each depents name, sex,
birthdate, and relationship (spouse or child or other) to the employee (assume
that only one parent works for the company). We are not interested in information
about dependents once the parent leaves the company.



Chapter 3

DATABASE: THE RELATIONAL
DESIGNER PERSPECTIVE

3.1 The Relational Data Model

The relational data model, de ned by Codd in 1970, has been spported by
DBMSs from the mid-1970s on. Such systems soon became populanainly
because of the simplicity of the data model and the facilities they provide to
allow easy access to the data for non-expert users. Severahplementations
exist and are available on many types of personal computersand workstations
(e.g., ORACLE, DB2, SQL Server, Sybase).

The relational data model supports a very simple, tabular view of the data,
with a direct correspondence to the mathematical concept ofa relation. Fol-
lowing the proposal of the relational data model, an important theory has
been developed to assist in the design of relational databas; this theory will
be presented in the next section.

The relational data model describe databases in terms of setof tuples
(records) and associations among data in terms of values ofttaibutes, and
not using a speci ¢ abstraction mechanism. This way of desdbing associa-
tions looks similar to the solution adopted in object data models, but there
are important di erences in the modeling capabilities of these two data models:

- In the object data model the structure of the objects can be omplex,
whereas in the relational data model the structure of a tupleis simple,
i.e. the values of the components of a tuple are elementary.

- In the object data model the associations model set of objétuples, whereas
in the relational data model associations are described byt&ibutes which
can only have the value of the key of the associated elementd some other
relation as their values.

- In the object data model the structure of an object is de ned together with
the representation of the procedural knowledge, whereas ithe relational
data model only a mechanism to describe the structure of the uples is
provided.

A number of studies which aim at overcoming some of the limitdions of the
relational data model are now in course, and references to #m are given in
the bibliographic notes.



18

CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

De nition 3.1.1 A relational database is described by a set of relation scheas
R : fTg de ned as follows:

- integers, oats, booleans and strings are primitive types.

equal if they have the same set of pairs4; : T;).
- If T is a tuple type, then f Tg is a relation type;
- A relation schemaR : fTg is a variable R with a relation type.

Tn) is a set of pairs A;; V;) with V; of type T;. Two tuples with the same type

are equal if they have the same set of pairsA;;Vi). The extension of an re-
lation schemaR : fTgis a nite set of tuples of type fTg, called arelation.

The cardinality of a relation is the number of its tuples. The extension of a
relational database is a collection of the extensions of itselation schemas.

De nition 3.1.3 A key for a relation is a minimal subset of attributes whose
values identify a tuple. Out of all the possible keys the datdase designer
identify a primary key.

An example of a relational database schema is:

Studentsf Name: string, StudentCode string, City: string, BirthYear : intg
ExamResultsf Subject string, Candidate: string, Date: string, Grade: intg

where the attribute StudentCodeis the primary key for the relation Students and

the attribute candidatein ExamResults whose values match those of the primary
key of the students relation, is called an external key An external key is used
to model associations.

Example 3.1 A relational database schema for the example in Figure 3.1 ighe
following (primary keys are underlined):

FHSRE ()T
-+")"%0.
TH% | &(
)% &(*+
101)82.(% &()*+
3406 )
e
231%:
b 2))-(.40 196%L.
23??14)80/ &89(; = I B @0
5*4-)'8% ()4 °
oo 6578$091.(% )*

Figure 3.1 A database schema using the ODM

Authors(Name, BirthDate, Nationality)
BibliographicDescriptions(ISBN Title, Publisher, Year)
Books(ISBN, Position CopyNumber)
Authors-BibliographicDescriptions(Name ISBN)



c A. Albano

3.2 Relational Algebra 19

Figure 3.2 shows a graphical notation for representing retéonal schemas: A
rectangle represent a relation schema and directed arrowsdm R to S repre-
sent an association between them with a foreign key de ned irR for S.

%S

o ]

14398 ()*
0*&$1$*"%
IS8 $1$*% 0%+ 94"
e
"#$%&™ '48$-$4"%)*  +",-&.*

+(,*-./0* $%&'()*
IHS06& " ($Y0) + &

/10122**

0*&$1$*'%

/10122
111" #$%& " +<22%

345%)* +',-&. H=>07")* +',-&.
-"6)* +",-&. /10122
7-,"89%4,)* -&" @4"%)* +',-&.

A,4$%)* -&"

+(,*-./0% $%&'()*$1.-'$*--2.34-(%

Figure 3.2 A graphical notation for a relational schema

3.2 Relational Algebra

The relational data model supports operations on relationswhose results are
themselves relations. These operations can be combined ug an algebraic
notation called relational algebra Let R, S, and E be a relational expression
de ned using relations in the database or constant relatiors.! There are six
fundamental operations in relational algebra:rename, project, select set union,
set di erence, and product; we shall also mention some additional operations
which serve as useful shorthand.

3.2.1 Fundamental Operations

.....

A1;A2; 0 Ap are attributes of R. The result is a relation with type fA7 :
T1;A2: T Am : Tmg whose tuples are those oR with only the attributes
A1;A2; 1 Am. Since the result is a set, any duplicate tuples are eliminatd.

Select: condition (R)

1. A constant relation is written by listing its tuples withi n fg, for example f (A1 :=2; A, :=
125); (A1 :=3;A;, :=250)g.



CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

The result is a relation with the same type asR, whose tuples are those oR
which satisfy the condition.

Set union:R[ S

R and S are relations of the same type, and the result is a relation wh tuples
which are in R or S or both.

Setdierence: R S

R and S are relations of the same type, and the result is a relation wh tuples
which are in R but not in S.

Product: R S

TniAn+r :Ther i Anem : Them0 Whose tuples are all possible tuples whose
rst n components form a tuple in R and whose lastm components form a
tuple in S.

Let us show how these operators can be used to write queries ing the
following database:

Students
Name StudentCode City BirthYear
Isaia 071523 Pisa 1962
Rossi 067459 Lucca 1960
Bianchi 079856 Livorno 1961
Bonini 075649 Pisa 1962

ExamResults

Subject Candidate Date Grade
DA 071523 12/01/85 28
DA 067459 15/09/84 30
MTI 079856 25/10/84 30
DA 075649 27/06/84 25
LFC 071523 10/10/83 18

Example 3.2 First, we nd the name, and the student code of all the students of
Pisa.

Name;StudentCode ( City = 'Pisa’ (Students))

Name StudentCode

Isaia 071523
Bonini 075649

Next, suppose we want to nd the names of all those students, Wo have passed the
exam \DA" with grade 30, plus the examination date. Let us compute the result in
more than one step, using the following strategy: since we real information from both
the Students relation and the ExamResultsrelations, let us rst compute the product
of the two relations, producing the following temporary relation T:

T := Students  ExamResults

which can be very large: if there aren tuples in Studentsand m tuples in ExamResults
then there aren mtuplesinT.



c A. Albano

3.2 Relational Algebra 21

Name StudentCode  City BirthYear Subject Candidate Date Gra de
Isaia 071523 Pisa 1962 DA 071523 12/01/85 28
Isaia 071523 Pisa 1962 DA 067459 15/09/84 30
Isaia 071523 Pisa 1962 MTI 079856 25/10/84 30
Isaia 071523 Pisa 1962 DA 075649 27/06/84 25
Isaia 071523 Pisa 1962 LFC 071523 10/10/83 18
Rossi 067459 Lucca 1960 DA 071523 12/01/85 28
Rossi 067459 Lucca 1960 DA 067459 15/09/84 30
Rossi 067459 Lucca 1960 MTI 079856 25/10/84 30
Rossi 067459 Lucca 1960 DA 075649 27/06/84 25
Rossi 067459 Lucca 1960 LFC 071523 10/10/83 18
Bianchi 079856 Livorno 1961 DA 071523 12/01/85 28
Bianchi 079856 Livorno 1961 DA 067459 15/09/84 30
Bianchi 079856 Livorno 1961 MTI 079856 25/10/84 30
Bianchi 079856 Livorno 1961 DA 075649 27/06/84 25
Bianchi 079856 Livorno 1961 LFC 071523 10/10/83 18
Bonini 075649 Pisa 1962 DA 071523 12/01/85 28
Bonini 075649 Pisa 1962 DA 067459 15/09/84 30
Bonini 075649 Pisa 1962 MTI 079856 25/10/84 30
Bonini 075649 Pisa 1962 DA 075649 27/06/84 25
Bonini 075649 Pisa 1962 LFC 071523 10/10/83 18

However the only meaningful tuples inT are those with equal values for the attributes
StudentCodeand Candidate

R = studentCode = Candidate (T)

Name StudentCode  City BirthYear Subject Candidate Date Gra de
Isaia 071523 Pisa 1962 DA 071523 12/01/85 28
Isaia 071523 Pisa 1962 LFC 071523  10/10/83 18
Rossi 067459 Lucca 1960 DA 067459  15/09/84 30
Bianchi 079856  Livorno 1961 MTI 079856  25/10/84 30
Bonini 075649 Pisa 1962 DA 075649 27/06/84 25

The nal answer to our query is the result of the expression:

Name;Date ( Subject = 'DA' ~ Grade = 30 (R))
The same result might have been obtained with the expression

Name:Date ( Subject = 'DA' ~ Grade = 30 » StudentCode = Candidate (Students ExamResults))

As matter of fact, the result of the above expression can be goputed in a
more e cient way than that shown above. This is a property of a relational
manipulation language: a complex expression is a way of spifging the result
declaratively, without forcing the system to follow certain steps, as happens in
the rst case shown above. The system chooses the best stragg by estimating
the cost of obtaining the query answer according to di erent alternatives. We
will discuss this aspect in more detail later on.

3.2.2 Additional Operations

Examples of additional and very useful operators that can beexpressed in
terms of the ve basic operators above arentersect, join, and natural join .

Set intersection: R \ S



22

CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

R and S are relations of the same type, and the result is a relation wh tuples
which are both in R and in S.

Join: R R:Ai/:S:Aj S

RfAy :Ty;:iAn s Thgand SFAn+1 : Thers i i Anem © Them@ are relations
with a disjoint set of attributes, A; an attribute of R and A; an attribute of
S.The join R ., g4, Sisequivalentto ai=a; (R S).

Natural Join: (R / S)

The natural join is only applicable when both R and S have attributes with the
same name. Let us assume thaR and S have the common attribute A;. The
result is computed by selecting those tuples oR S that have the same value
for the common attribute A;, and excluding one of the common attributes
from the result.

The following operators are examples of useful extended rafional algebra
operations.

expression involving constants and attributes in the scherma of E, and ide,, ...,
ide, is a set of di erent attributes.

following expression:

A1;2 AS Two;A1+As AS A1PlusA3(R)

The expressions in the generalized projection can be de nedsing aggregate
functions, which take a collection of values and return a single value sresult.

Common aggregate functions includemin, max, count, sum, and avg If a

generalized projection contains an aggregate function, tan all the expressions
must be aggregate functions, and the result is a relation wih a single tuple
with attributes values the results of the aggregation functions.

of E on which to group; eachf; is an aggregate function applied to attributes
of E. The meaning of the operation is as follows (Figure 3.3):

1. The tuples of E are partitioned in groups in such a way that all the tuples

where for eachi, v; is the result of applying the aggregation functionf; on
the multiset of B; values in the group.



¢ A. Albano 3.2 Relational Algebra 23

U

k-

b g e, 1

U R |:>
g

(- (-
{l

< 3
N
R0

b g
NI $:2:1

Figure 3.3 Grouping evaluation

For example, to nd for each value of A; the maximum value of A,, and the
sum of the A3 values, we write the expression:

A1 max(Az);sum(A3z) (E)

As in the generalized projection, attributes of a grouping geration can be
renamed as follows:

A1 max(Az) AS M; sum(As) As s (E)

Sort: A1:A2 A (R)

.....

ing order the attributes becomes pairsA; d, whered stands for \descending".

3.2.3 Equivalence rules

Two relational algebra expressions are said to bequivalentif, on every legal
database instance, the two expressions generate the same ¢ tuples. Note
that the order of the tuples is irrelevant.

An equivalence rulesays that expressions of two forms are equivalent. A
qguery optimizer uses equivalence rules to transform exprasons into other
logically equivalent expressions. We now present some of ém.

1. Cascade of select

x( y(E)): x N y(E)l

2. Select and project are commutative
v «(E)= L (v(E);ifX Y.
If X 6 Y, then:
v «(EN= v( x( xy (E).



24 CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

3.

10.

Select distributes over product and join

«(E1 E2)= [ (E1) Ey
x(EllEZ): x(El)/EZ-

if X are attributes from E;.

y(El EZ): X (El) y(EZ)l
Y (El /E 2) = X (El) / % (E2)l

if X are attributes from E; and Y are attributes from E».
xN oyh J(El EZ): x(El) /J Y(EZ)v
if X are attributes of E1, Y are attributes of E; and ; is a join condition.

. Cascade of project

z( v(E)) = z(E),

whereZ and Y are attributes from E,andZ Y.

. Project distributes over product and join

xy (E1  E2)= x(E1) /Y(Ez),
xy (E1*, E2)= x(E1) ) v(E2),

where X are attributes from Eq, Y are attributes from E,, and ; is the
join condition with attributes J XY .

xv 1l ED= v (Cxxe,(ED) | (vxe, (E2),

where X are attributes from E1, Y are attributes from E», Xg, are the join
attributes from E; which are not in XY , and Xg, are the join attributes
from E, which are not in XY .

J

. Product and join are commutative

E1 = Ep
=] /J Ez E> /J E1

. Product and join are associative

(Ex/E2) [E3=Ei/ (E2/E Q).
(E1 7 E2) %, Es=E1 °  (Ez27 Ej)

J3 J1 J2

where j, contains only attributes of E» and E3. If the join condition is
empty, it follows that  is associative.

. Set union and intersection are commutative

Ei[ E2= E2[ B
El\ E2: Eg\ E]_
E:1 E»6E; E;

. Set union and intersection are associative

(E1[ E2)[ Ez= E1[ (E2[ E3)
(El\ Ez)\ E3= El\ (Ez\ E3)

Select distributes over set operations
X (El E2) = X (El) X (EZ)
the equivalence holds with replaced by[ or\ , while
X (El E2) = X (El) E2
holds with replaced by [, but does not hold if is replaced by\ .



c A. Albano

3.3 Relational Database Design: ODM-to-Relational Mapgpin 25

City = %Pisa® ~ Grade = 25 * StudentCode = Candidate

11. Project distributes over set operations

x(Ex[ E2)=( x(E1)) [ ( x(E2)
12. Select distributes over grouping

x(a F(E)=a r( x(E))
if X uses only attributes from A.

We now illustrate the use of the equivalence rules. The exprsion
Name( (Students ExamResult3),

where = ( StudentCode= Candidate” City = %Pisd® » Grade = 30), can be repre-
sented as the initial expression tree query tree) in Figure 3.4, and then it can
can be represented also with the transformed query tree, takg into account
the previous equivalence rules.

Name Name
/ .
StudentCode = Candidate

Name, StudentCode Candidate
|
Students  ExamResults City = %Pisal Grade = 25
|
Students ExamResults
Initial query tree Tree after transformations

Figure 3.4 Expression trees

3.3 Relational Database Design: ODM-to-Relational Map-
ping

The growing use of DBMSs, the complexity of the new applicatbns, and
the need to implement database applications that can be reaity adapted to

changes in user requirements, have all led to an increasingedthand for envi-
ronments with integrated sets of automated tools to supportboth the design
and the maintenance of database applications. The problemsi similar to that

of software engineering and the following strategies haveden adopted: a) the
de nition of a design methodology composed of a set of struaired steps in
which design decisions are considered one at a time to achiea satisfactory
result; b) the de nition of techniques to be used during the design steps; c)
the de nition of tools for an automated development support system.

The aim of a design methodology is to transform a user-orierdd linguis-
tic representation of the information needs of an organizaibn into a DBMS-
oriented description. There is a general consensus amongsearchers and prac-
titioners on the static and dynamic aspects that should be maleled during
the design process. Static aspects regard the data structes and integrity



26

CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

constraints, while dynamic aspects concern the transactios modifying the
database from one consistent state to another. We shall cofider here only the
static aspects.

Di erent phases of design have been suggested to cope with ghcomplexity
of the database design procesdJser requirements analysis and speci cation
consists of collecting user needs and normalizing them acating to established
standards. Conceptual desigris the phase in which requirements are formalized
and integrated into a global conceptual schema, using a DBMSndependent
conceptual language. In the next phaselogical design the conceptual schema
is mapped into a logical schema using the data model supporteby the DBMS
chosen for the implementation. Finally, physical designconcerns the selection
of the data structures used to store and retrieve the data.

When a relational DBMS is used, in the logical design phase t@ designer
can benet from a well-developed theory, callednormalization theory, which
provides algorithms to produce a set of relation schemas wiit certain desirable
properties, and in particular to avoid certain \bad" design decisions, both with
respect to semantics and to performance.

In this section the steps of an algorithm are described to ddgn a relational
schema from a conceptual design. For simplicity only structiral aspects are
considered:

STEP 1. Representation of 1:N and 1:1 associations with the rules irFig-
ure 3.5.

" #
1 [ # ] , !
Y68 ( Y&
%8 %8 i
1. ! [ % ] i ! #
Y68 Y&
%8 ISR i
—
I Y68
=i |
I HS%68: s |
] — "
ISR T Esea( e | p
H 01 N [ [
i yoeet - J011 rrHSHE(
E— sk
S8
I"H4S%&&E ()%*) +& - 96%)"+96.8/-0/-8+*96%) +8'1SI"HSU & & () %6%) +&

Figure 3.5 Rules for STEP 1

STEP 2: Representation of N:M associations with the rules in Figure3.6.

STEP 3: Representation of class hierarchies with the rules in Figue 3.7. For
simplicity we assume that the subclasses are disjoint and tht the class
attributes are not rede ned in subclasses. Three main optims are possible:

1. A single relation with the attributes of the class and subdasses, and a



¢ A. Albano 3.4 Relational Database Design: Normalization Theory 27

" | #
— N R S—— S L
— — | Kk, \-- **.' .0__ — —
ST T i ST e
] 0 "$ ! "%
Y68 ] I H#5%&™( 13)%+ -)**_310--
! 14)%%+ - Y*%, 4/10-- _‘
T
! #
[ 1 # 1 - 1] ) 10— i
" H$%E." v e [ rHs%s( | 1y*kt )+, [10-- 1" H$%8"
! 2)!""#$%§"'(
I
1" H#$%&™
I"HS%EE()%6*) +& -96%)+96.8/-0/-&+*96*) +$ LI #BU&& () %6*) +&

Figure 3.6 Rules for STEP 2

special attribute D to discriminate to which subclass a tuple belong,
if any.

2. A relation for the class and a relation for each subclassvertical par-
titioning ). The relation for the class contains the class elements and
the elements of the subclasses.

3. A relation for the class and a relation for each subclass wibh include
the class attributes too (horizontal partitioning ). The relation for the
class contains the class elements which do not belong to thelsclasses.

STEP 4: De ne the primary key for each relation representing a classof the
conceptual schema. For each relation representing a subds, the primary
key is that selected for the superclass.

STEP 5: Representation of multi-valued attributes: if a class C has a multi-
valued attribute A, de ne a new relation with attributes corresponding to
A, plus the primary key for C as a foreign key.

STEP 6: Representation of composite attributes: if an attribute A is a record
with elds A;, A is replaced by theA;.

The applications of the above steps to the schema in Figure 8. produces the
relational schema in Figure 3.8.

3.3.1 Exercises

1. Convert the following conceptual schemas to a relationatatabase schema.

(a) Your solution to Exercise 2.4(3).
(b) Your solution to Exercise 2.4(5).
(c) Your solution to Exercise 2.4(6).

3.4 Relational Database Design: Normalization Theory

In this section, we shall show how normalization theory can ke applied directly
following an approach to relational database design whichs based on analyzing



28

CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

# | rHSs% 8

(HHASP)* +++,&&

Lll

' & $ %
— ] " s
HHSP)*+++,&&
1"#$9%&"()*%%+%
!
! . # T THSS%I8& i
# ISR < <~
y (HHHHSP)* +++,&&
"~ ( (!
' %
Lty o com—
012345637389: .!/#$$%!&&#$$)! && '!_#$$%!&&#$$)!* & b
AHEP) F+++,&&
- /)+$0+)*1-2.$0+30+%+.1*1-2.$ 5+)*1-2.%)$0+30+%+.1*1-2.$248I"#$%&'()*%%+%
248I"#$%&'()*%%+% '6$7+01-(*)$3*01-1-2.-./
! " gphe
# IHH3SNI&& -
(HHHHEP)* +++,&&
i & $
—> E$$%I&& I"#$$9%! & &H#
%
. ARG
# |/ # |-
<— (HHH$D)+++,&& S| (HHHSD)F+++,&&
HHP)*+++,&&

54)%1-2.%)$0+30+96+.1%1-2.$2481"#$%&'()*%%+%
'6$820-92.1%)$3%01-1-2.-./

Figure 3.7 Rules for STEP 3

an application in terms of its elementary facts and the funcional relationships
among them, and then synthesizing a \good" set of relation shemas.

To show in which sense a relation schema can be considered \WBg let us
assume that we are interested in representing certain infanation in a simpli-
ed library administration system, and we have decided to represent it in one
relation with the following schema:

Library (UserName, Address, Tel, CallNumber, Author, Titl e, Date)

The library has a set of books (not more than one copy per book)each
identi ed by a unique book number. Books may be loaned to borowers, each
identi ed by a unique name, and having an address and telephne number; a
library user can have more than one book on loan at the same tim; the lending
date is also recorded. The key of the relation i UserName, CallNumbeg. An

example of an instance of the relation is:



¢ A. Albano 3.4 Relational Database Design: Normalization Theory

29

(8%-2+&
&0

L2+

(3453%6&-7$38
9+'8&37#3%.'

I"#$%8&' 177+-&". (%%)'
(%&&%*+&' %-.'
<H+H =-8"5#> ’:/ff/("ti%fg‘ 0
Figure 3.8 A relational schema for a library
Name StudentCode
Isaia 071523
Bonini 075649
UserName Address Tel CallNumber Author Title Date
Rossi Carlo Carrara 75444 XY188A Boccaccio Decameron 07-07
Paolicchi Luca Avenza 59729 XY256B Verga Novelle 07-08
Pastine Maurizio Dogana 661338 XY090C Petrarca Canzoniere01-08
Paolicchi Laura Avenza 59729 XY101A Dante Vita Nova 05-08
Paolicchi Luca Avenza 59729 XY701B Manzoni Adelchi 14-01
Paolicchi Luca Avenza 59729 XY008C Moravia La noia 17-08

The above schema is \bad" because it presents the following &in undesirable

properties:

- Repetition of information. Every time a user borrows another book, the
information about his address and telephone will be repeat#; this wastes
space and complicates database updating when a user changaddress.

- Inability to represent certain information . Information about users can be
stored only when they borrow a book.

An alternative design is to replace the schema with two relaton schemas, but
a careless decomposition may lead to another kind of \bad" dsign. Consider
the following rather absurd decomposition where the assoation between loans
and borrowers is modeled by the telephone numbers:

Users(UserName, Address, Tel)
Loans(CallNumber, Author, Title, Date, Tel)

The instances of the two relations are obtained by projectims of the Library
relation as follows:

Users = yserName, Address, Tel (Library) =



CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

UserName Address Tel

Rossi Carlo Carrara 75444
Paolicchi Luca Avenza 59729
Pastine Maurizio Dogana 661338
Paolicchi Laura Avenza 59729

Loans = caliNumber, Author, Title, Date, Tel  (Library) =

CallNumber  Author Title Date Tel
XY188A Boccaccio Decameron 07-07 75444
XY256B  Verga Novelle 07-07 59729
XY090C Petrarca Canzoniere 01-08 661338
XY101A Dante Vita Nova 05-08 59729
XY701B Manzoni Adelchi 14-01 59729
XY008C Moravia La Noia 17-08 59729

This decomposition eliminates data duplications, but pregnts another anomaly
when we need to reconstruct thelibrary relation. For example, suppose that
we wish to send a letter to solicit users to return books borraved in January.
To obtain the required information, the following query can be formulated:

UserName, Address (Users / Data2(01 01;31 o1)(Loans))
The result is

UserName Address

Paolicchi Luca  Avenza
Paolicchi Laura Avenza

which is wrong since Laura Paolicchi has not borrowed a bookn January.
Thus, when we join Users and Loans we have more tuples in the result than
those we expect. This anomaly is called doss of information and the decom-
position is called alossy decomposition The reason for this anomaly is that
we have selected a wrong external key to describe the assottan of users and
loans. A correct design would have been

Users(UserName, Address, Tel)
Loans(CallNumber, Author, Title, Date, UserName)

The main goal of relational design theory is to give formal citeria to design
databases without anomalies of the types represented by thabove examples.
In the following, we will assume that attributes have a global meaning i.e.
attributes mean the same wherever they occur in a database kema, and we

adopt the following conventions:

- Capital letters near the beginning of the alphabet stand fa single attributes
(A;B; A 1; Ay, etc.).

- Capital letters near the end of the alphabet stand for sets 6 attributes
(X;Y;U; Z, etc.).

- XY is used as a shorthand forX [ Y, AB as a shorthand forfA;B g, and
AX as a shorthand forfAg[ X.

- Names beginning with a capital letter denote relation schenas, andR(T) a
relation with a set of attributes T.

- Let t be a tuple, R(T) a relation schema, andX T, then t[X] denotes the
X -value of t.



c A. Albano

3.4 Relational Database Design: Normalization Theory 31

3.4.1 Functional Dependencies

In order to formalize the notion of schema without anomalies we need a formal
description of the semantics of the facts stored in a relatia. Codd [?] proposed
a particular kind of formalism based on the notion of functional dependency:

De nition 3.4.1 Given a relation schemaR(T) and X;Y T, a functional
dependency (FD) is a constraint onR of the form X ! Y, i.e. X functionally
determinesY or Y is determined by X, if for any legal instancer of R a value
of X uniquely determines a value ofY

8ty;t2 2 r such that t1[X] = ty[X] it is also the case thatt;[Y] = t2[Y]:
(3.1)

We say that an instancer of R satis es the FD X ! Y if condition (3.1) holds,
and that an instancer of R satises a setF of FD if, foreach X | Y 2 F,
condition (3.1) holds.

Condition (3.1) formally expresses the following constrant: in any legal in-
stancer of R, if two tuples have the sameX value, then they will also have
the sameY value. These kinds of constraints depend on the semantics dhe
represented facts and consequently must be true for any leganstancer of R;
we cannot look at a particular instance of R and deduce what functional de-
pendencies hold folR. Functional dependencies might be enforced by a DBMS
if this is speci ed by the database designer, but relationalsystems usually en-
force only those functional dependencies that follow from he fact that a key
determines the other attributes of a relation. Since functonal dependencies
are an important aspect in database design, in the followingwe will use the
convention that R < T;F > denotes a schema with a sef of attributes and
a setF of functional dependencies overT .

Let us consider a legal instance of R<T;F >, with F = fX | VY;X !
Zg;, X;Y;Z2 T,and W X. Many other functional dependencies are sat-
ised by r including, for example, X ! W and X ! Y Z. In fact, in the
rst case, if two tuples have the same value onX, they will certainly have
the same value onW which is a subset ofX (trivial FD); in the second case
if t1[X] = to[X], sincetq;t, satisfy the FDs in F, it is also the case that
t1[Y] = to[Y] and t1[Z] = t»[Z], and consequentlyty[Y Z] = to[Y Z].

Thus, given a setF of FDs, other FDs will generally be “implied' by this set
in the following sense:

De nition 3.4.2 Given a setF of FDs on a schemaR, we say thatF F X !
Y, i.e. F logically implies X ! Y, if every instancer of R that satis es F also
satises X ! Y.

From this de nition, the previous example has shown that

X1 Y; X! Zg X! YZ
and
W X fgj=X! W

An interesting question is whether there is a way of computirg all the possible
FDs logically implied by a setF, using a set of inference rules with the property
of being sound and complete so that we can derive mechanically all the FDs
implied by F, and only those.



32

CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

3.4.2 Inference Rules

A set of inference rule to derive new FDs mechanically from aigen setF are
the Armstrong axioms?:

F1 (reexivity ) If Y X; thenX ! Y
F2 (augmentation) If X ! Y;Z T;thenXZ! YZ
F3 (transitivity ) If X 1 Y;Y! Z; thenX ! Z

Denition 343 F " X! Y i X ! Y can be inferred fromF using Arm-
strong's axioms as inference rules.

Using these rules, the following rules can also be proved oarct

fX 1 Y; X! Zg™ X! YZ(union rule)

Z YfX! Yg X! Z(decomposition rulg
fg- X1 X

fX! Yg  XZ! Y

W ZzZ;V YIX! Yg XZ! VW

So far, we have discussed derived dependencies in two wayse Wave talked
about logically implied dependencies j) and about dependencies which are
inferred using Armstrong's axioms as deduction rules (). In fact, these two

ways of de ning derived dependencies are the same: if a funictnal dependency
f can be inferred from a setF using Armstrong's axioms, thenf is logically

implied by F (soundnes} and, vice versa, iff is logically implied by F, then

f can also be inferred using Armstrong's axioms dgompletenesk

Theorem 3.4.1 Armstrong's axioms are sound and complete.

A consequence of this theorem is that we can substitutg= with = and vice
versa in all the previous results.

3.4.3 Closure of a Set of FDs

De nition 3.4.4 Given a setF of FDs, the closure ofF, denoted by F*, is:
F*=fX! YjF™ X! Yg

Therefore, to test whether an FDV ! W is in F* (the implication prob-
lem) we can generate all the FDs inF*, which is a nite set, by applying
Armstrong's axioms repeatedly. This way of solving the impication prob-
lem is generally found time-consuming, simply because thee$ of depen-
dencies inF* can be large even wherF itself is small. Consider the set
F=1fA! Bi:::;A! Bpg, then F* will includes all the dependencies
Al Y,whereY is a subset off By;:::;Bng and there are 2' of setsY.

A simpler way of solving the implication problem follows from the following
notion of closure of a set of attributes and theorem.

De nition 3.4.5 Given aschemaR < T;F > ,and X T, the closure of X,
denoted by X *,is X" = fA2 TjF * X ! Ag.

Theorem 3.42 F* X! Yi Y X*.

2. There are several equivalent sets of rules and we presentyst one of them here.



c A. Albano

3.4 Relational Database Design: Normalization Theory 33

Instead of computing F*, compute X * and then test whether Y X*.
Therefore an algorithm to compute X * is

Xt =X

while (changes toX *) do

foreach W! Vin F with W X*and V6 X"
doX*=X*[V
It turns out that in the worst case this algorithm has time com plexity O(apminf a; pg),
where a is the number of attributes and p the number of FDs. A faster algo-
rithm, with time complexity O(ap), has been given by ?P].

Using the notions of functional dependency and closure of ¢ of dependen-
cies, we can formally de ne the concept ofkey of a relation.

De nition 3.4.6 Given the schemaR < T;F >, we say thatW T is akey
(or a candidate key of R if

LwW! T2F*
28V W;V! TexF*

In general, there are many candidate keys for a relation, andve designate one
of them as the primary key to be used in representing associations. We also
use the term superkeyfor any superset of a key and the termprime attribute
for an attribute which belongs to a candidate key. The following results have
been proved for keys:

1. The problem of nding all the keys of a relation requires analgorithm with
an exponential time complexity.

2. The problem of testing whether an attribute is prime is NP -complete.

3.4.4 Covers of Sets of Dependencies

Let F and G be sets of dependencies on the same attributes. Using the rioh
of closure we can determine when two sets of dependencies aguivalent and
thus when two schemas on the same attributes represent the sz information.

De nition 3.4.7 Two sets of FDs, F and G, over schemaR are equivalent
writen F  G,i F*=G*.If F G, then Fis acoverfor G (and G a cover
for F).

It is easy to test whether F and G are equivalent: test if every dependency in
F isin G*, and every dependency inG is in F*.

It is useful to have a cover for a given set of FDs which is easyot deal with
and which has simple and important properties. An example isgiven in the
following de nition.

De nition 3.4.8 Let F be a set of FDs

1. Given X ! Y 2 F, we say that X contains an extraneous attribute A; i
X f Ajg! Y2F*,
2. X ! Y is aredundant dependencyi X! Y 2 (F f X! Yg)*;
3. F is called acanonical cover i
- every right side of a dependency inF is a single attribute;
- no attribute on any left side is extraneous;



34

CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

- no dependency inF is redundant.

Theorem 3.4.3 Every set of dependencie§ is equivalent to a setFthat is
a canonical cover.

The following example shows that in general a seF of FDs can have more
than one canonical cover.

Example 3.3 Forthe set F = fAB ! C;A! B;B ! Aghboth fA! C;A!
B;B! AgandfB! C;A! B;B ! Agare canonical covers.

An algorithm to compute a canonical cover based on de nition3.4.8 has time
complexity O(a?p?).

3.4.5 Schema Decomposition

It has been shown that in order to eliminate anomalies from a lad schema,
the schema must be decomposed into smaller schemas. Let us e formally
the notion of a decomposition and its desirable properties.

De nition 3.4.9 A decomposition of a schemaR(T) is the substitution of
R(T) with a set = fRy;:::;Rkg of schemasR;(T;) suchthat [ T, = T

There are two desirable properties of a decompositiordata preserving(lossless
join) and dependency preserving

Data Preserving Decomposition

is data preserving if for every legal instancer of R:

r=(Cnn/ ()l 1 (xrn)

That is, every legal instancer is the natural join of its projections onto the
Ri's. From the de nition of the natural join operator, the foll owing result can
be proved.

Theorem 3.4.4 Let R < T;F > be a relation schema, = fRj;:::;Rkg be
any decomposition ofR, and r any legal instance ofR. Then:

r(nn/ ()l 1 ()

This theorem clari es the notion of loss of information: in general a relation
is not recoverable from its decomposition, as it is shown by he following
example.

Example 3.4 Let us consider the following instance of the relationR(A;B; C):

A B C

ax b G
a b ¢



c A. Albano

3.4 Relational Database Design: Normalization Theory 35

The following decomposition is not data preserving because ( as )/ ( Bc ).
ag ()= A B gc()= B C
a1 b b G
a b b o

Since it is desirable for a decomposition to be data preserag, the following
theorem gives a condition which can be used to establish whethis property
holds.

Theorem 3.4.5 Let R < T;F > be a relation schema, the decomposition
= fR1;Rogis data preservingi Ti\ To! T12F* orTy\ To! T2 F*.

This result has been extended by providing an algorithm to test whether a
decomposition in more than two smaller relations is data preerving.

3.4.6 Dependency Preserving Decomposition

De nition 3.4.11 Given the schemaR <T;F > ,andT; T, the projection
of F onto Tj is

L(F)=fX1 Y2F*X;Y Tg

Proposition 3.4.1 Given a schemaR < T;F >, and X T, the problem of
nding a canonical cover of the projection of F on X is NP -complete.

A simple algorithm for computing 1, (F) is

Algorithm  Projection of F onto T;
input RhT;Fi andT;i T
output A cover of the projection of F onto T;
begin
foreach Y T; do
begin
Z:=Y7
returnY ! (Z\ T;)
end
end

is dependency preservingi [ T1,(F) F.

A trivial algorithm for testing whether a decomposition = fRy;:::;Rng
preserves a set of dependencids is to compute the projections of F onto the
attributes T;, take the union [ T;, and test whether this set is equivalent to
F. This algorithm will have an exponential time complexity. H owever a faster
algorithm exist which does not require the computation of the projections of
F onto the attributes Tj, and takes time that is polynomial in the size of F
[?].

The reason why it is desirable for a decomposition to presees a set of
dependencied- is that the dependencies inF are integrity constraints for the
relation R. If the projected dependencies did not implyF, then every update
to one of the R;'s would require a join to check that the constraints were not
violated.



36

CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

The data preserving and dependency preserving propertiesfa decompo-
sition are independent, i.e. there exist lossless decompitiens which do not
preserve dependencies and vice versa. The following resulelates the two
properties and gives a su cient but not necessary condition to establish if a
dependency preserving decomposition is data preserving.

De nition 3.4.13 Given a schemaR < T;F > and a dependency preserving
decomposition = fR; < Tj;F; >g such that a T; is a superkey forR <
T;F >, then is data preserving.

3.4.7 Normalization Using Functional Dependencies

We now examine how functional dependencies can be used to dee several
normal forms which represent \good" database design. The mst important
are the third normal form (3NF) and the Boyce-Codd normal form (BCNF).

De nition 3.4.14 R <T;F > isin 3NFif, when X ! A2 F*, and A 62X,
then X includes a key orA is prime.

Example 3.5 A schema which is not in 3NF is

Employees(#Employee, NameOfEmployee, NameOfDept, InfanationOnDept)
#Employee | NameOfEmployee NameOfDept InformationOnDept
NameOfDept! InformationOnDept

The relation Employeesis not in a desirable form since there is a repetition of infor
mation: if there are several employees working in the same gartment, then we are
forced to repeat the information on the department for each enployee.

If F is a canonical cover, then the following result holds

Proposition 3.4.2 R<T;F > isin 3NF if, when X | A2 F, X is a key or
A is prime.

Since, for both the de nitions, we need to know if an attribute is prime in
order to test whether a relation schema is in 3NF, we will havethe following
result.

Proposition 3.4.3 The problem of deciding whether a relation schemaR <
T;F > is in 3NF is NP -complete.

Example 3.6 Let us consider the following schem&ipCodes(City, Street, Zip), with
FDs

City Street | Zip

Zip! City
That is, the address (city and street) determines the zip co&, and the zip code
determines the city, although not the street address. Sincehe candidate keys are
f City, Streetg, f Street, Zipg, all attributes are primes, and thus the schema is in 3NF,
but it su ers from the repetition of information problem. Co nsequently, 3NF does not
solve the problem of detecting \bad" schemas completely an@énother normal form is
required.




c A. Albano

3.4 Relational Database Design: Normalization Theory 37

De nition 3.4.15 R<T;F > isin BCNFif, when X ! A2 F*, andA 62X,
then X is a superkey.

The schemaZipCodes(City, Street, Zip) from Example 3.6 is a well known
example showing that a relation schema can be in 3NF without lging in BCNF.
If Fis a canonical cover, then the following result holds

Proposition 3.4.4 R<T;F > isin BCNF if, when X ! A2 F, X is a key.

From this de nition, it follows that an algorithm to test whe ther a single
relation schema is in BCNF has a complexityO(ap?).

Proposition 3.4.5 Given aschemaR <T;F >, X T, andF°the projection
of F onto X, the problem of deciding if R< X;F °> is in BCNF is NP -
complete.

3.4.8 Polynomial Algorithms to Normalize in 3NF and BCNF
A Synthesis Algorithm for 3NF

The best known synthesis algorithm was proposed by Bernstai[?]. The basic
steps are the followings: (1) rst a canonical coverG of the FDs is computed;
(2) G is then partitioned into groups G; such that all the FDs in each G; will
have the same left-hand side and no two groups will have the sae left-hand
side; (3) eachG; then produces a 3NF relation schema composed of all the
attributes in G;. The algorithm will obviously provide a dependency presening
decomposition.

However, in order to avoid the synthesis of super uous schems, this basic
algorithm must be extended, as shown in the following exampd.

Example 3.7 LetF = fA! B;B! A;C! D;D! Cg;F isacanonical coverand
the basic algorithm generates the following schemasR{(A;B), R2(A;B), R3(C; D),
and R4(C; D), while two relations are su cient, Ri(A;B) and R3(C;D).

The extension of the basic algorithm is reported in Bernstemn [?] where it is
also shown that its complexity is O(a2p?). In [?], another step has been added
to the algorithm to produce a set of relation schemas in 3NF ttat has both
the data and dependency preservation properties. It requies that the nal set
of relation schemas includes a relation whose key is also they of the relation
which contains all the attributes in the initial FDs, which a re the inputs to
the synthesis algorithm.

As a consequence of this result, we have that it is faster to prduce a set
of relation schemas in 3NF, than to test whether a single reldon schema is
already in 3NF.

As there is no synthesis algorithm which can be used to produe a relation
schema in BCNF, another approach must be used.

A Decomposition Algorithm for BCNF

The goal of a decomposition algorithm is to convert a relatiom schema which
is not in BCNF into a set of relations: If R(X;Y;Z) is not in BCNF because of
X 1 Y,Risdecomposed intoR;(X;Y ) and Ry(X;Z ). The process continues
as long as theR; are not in BCNF. Therefore a decomposition algorithm is:



CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

=fR<T;F>g
while existsin aR; <T;i;Fi > notin BCNF because ofthe FDX ! A do
T1= XA
Fi= 1.(F)
T2= Ti
Fa= 1,(Fi)

= Ri+ fRy <T1;F1 > R2<TyF2>g

end
The decomposition is data preserving but, in general, not dpendency preserv-
ing, as shown by the following exampleR < fJ;K;L g;fJK | L;L! Kg>
is not in BCNF, however every decomposition will fail to preerve JK ! L.
Thus, obtaining a data and dependency preserving decompdsn is an im-
possible goal.

[?] gave an algorithm with a polynomial time complexity O(a®p) to com-
pute a data preserving decomposition in BCNF, although it will sometimes
decompose a relation that is already in BCNF. However, the poblem of de-
ciding whether a relation schema has a dependency presergrdecomposition
in BCNF is NP -hard.

3.4.9 Multivalued Dependencies and Fourth Normal Form

We have introduced the concepts of functional dependency, 8F, and BCNF
normal forms to avoid schemas with anomalies. Unfortunate}, 3SNF and BCNF

are insu cient to solve the problem. For example, the relati on Employees(EmpIName,
ChildName, Salary, Year), used to store information about the children and
salary histories of employees, is in BCNF (there are no FDs)however there

is a lot of data redundancy.

Employees

EmpIName ChildName Salary Year

Bragazzi Maurizio 1000000 1980
Bragazzi Maurizio 1200000 1984
Bragazzi Maurizio 1400000 1988
Bragazzi Marcello 1000000 1980
Bragazzi Marcello 1200000 1984
Bragazzi Marcello 1400000 1988
Fantini Maria 1000000 1980
Fantini Maria 800000 1984
Fantini Maria 600000 1988

Informally, data redundancy occurs whenever a multivaluedproperty is rep-
resented in a relation schema together with another simple o multivalued
independent property. An example is when we attempt to repreent the chil-
dren and salary histories properties for employees. If we lhrepresented only
one of these properties in a relation, we would not have had tis a problem:

EmployeeSalaries (EmpIName, Salary, Year).
EmployeeChildren (EmpIName, ChildName)

To deal with this redundancy, the concept of multivalued dependencie$MVDs)
is needed. MVDs unlike FDs, are not only a property of the infeamation rep-
resented by relations, but are dependent on the way attribues are grouped
into relations.

De nition 3.4.16 GivenaschemaR(T);X;Y subsetsofl,Z = T XY ,there
is in R a multivalued dependency (MVD) X!l Y, read \X multidetermines



c A. Albano

3.4 Relational Database Design: Normalization Theory 39

Y", i inany instance r of R, for any two tuples ty;t> 2 r with t1[X] = t[X],
there exists a tupletz 2 r such that t3[X] = t1[X] = to[X];t3[Y] = t1[Y], and
ts[Z] = to[Z].

Exchanging the roles oft; and t, in the de nition, we have that in addition to
t3, a tuple t4 must exist such that t4[X] = t1[X] = to[X];t4[Y] = t2[Y], and
ta[Z] = t1[Z].

For example, in the relation Employees the MVD EmpIName !! Child-
Name holds; let

t, = (Bragazzi, Maurizio, 1000000, 1980)
t, = (Bragazzi, Marcello, 1200000, 1984)

then the following tuples will also exist in the relation

t3 = (Bragazzi, Maurizio, 1200000, 1984)
t4 = (Bragazzi, Marcello, 1000000, 1980)

Let D denote the set of functional and multivalued dependenciesThe closure,
D*, of D is the set of all functional and multivalued dependencies Igically
implied by D. As was the case for functional dependencies, we can reason
about D using a set of inference rules.

Theorem 3.4.6 [?] The following axioms are sound and complete for func-
tional and multivalued dependencies:

F1 (reexivity ) If Y X,thenEX ! Y

F2 (augmentation) If X ! Y;Z T,thenXzZ ! YZ

F3 (transitivity ) If X ! Y;Y! Z,thenX ! Z

M1 (complemention If X! Y, then X! T XY

M2 (multivalued augmentation If V.. W; W  T; X!l Y, then XW!l YV
M3 (multivalued transitivity ) If X! Y; Yl  Z, thenX!! Z Y

M4 (replication) If X ! Y, then X! Y

M5 1fz9 zZy\z=;;XIl Y;Y! Z%thenX ! ZO

The following theorem shows how MVDs are related to losslessecomposition.

Theorem 3.4.7 Let R < T;D > be a relation schema and = fR1;R»g a
decomposition of R. Then is data preservingi T\ T!!' T; 2 D* (or
equivalently T;\ To!!' T,2D™).

If we consider a particular instancer, we will have the following result, which
is a more general statement of the similar result for FDs.

Theorem 3.4.8 Let R < T;D > be a relation schema, and = fR1;R.g a
decomposition; an instancer of R which satis es D decomposes on without
loss of information i r satises Ty\ To!!  Ti (or equivalently Ti\ To!l  Ty)

This theorem gives us a method which can be used to test if an stancer of
arelation R<T;D > satis esthe MVD X!I Y. We projectr onto XY and
X (T XY), join the two projections, and test if the result is r.

Finally, there is a generalization of a Boyce-Codd normal fom, called fourth
normal form (4NF), that applies to relation schemas with functional and mul-
tivalued dependencies.



CHAPTER 3 Database: The Relational Designer Perspective ¢ A. Albano

De nition 3.4.17 An MVD over R<T;D > s trivial if X! , where; is
an empty set of attributes, or X!! T X.

De nition 3.4.18 A relation schemaR < T;D > is in 4NF if for every non-
trivial MVD X!! Y in R, X is a superkey ofR.

The following result shows that 4NF is a generalization for BCNF.
De nition 3.4.19 If R<T;D > isin 4NF thenitis in BCNF.

A relation that is not in 4NF can be decomposed in much the sameway
as we constructed BCNF database schemas. The resulting demgosition is
data preserving. However, in general, it is not possible to dsign a database
schema that meets the three criteria: 4NF, dependency preseation, and data
preservation. Moreover, it is not known how (or if) a syntheds algorithm can
handle MVDs.

Other kinds of dependencies have been de ned to avoid otherfms of data
redundancy in a relation schema. The interested reader mayansult [?] for a
fuller discussion of dependency theory, including other tpics which have not
been addressed here.

3.4.10 Exercises

1. Prove that for a schemaR < T;F > , with F a canonical cover, if an attribute A;
does not appear in the right side of any FD, thenA; belongs to every key ofR.

2. Prove that if a schemaR < T;F > has two attributes only, then it is in BCNF.

3. Prove that if a schemaR < T;F > is in 3NF, and all keys are made of one
attributes, then it is in BCNF. Hint: prove that foreach X ! A2 F, X is a
superkey.

4. For each of the following relational schemas and set of fustional dependencies:
(& R(A;B;C;D) with functional dependenciesAB! C,C! D,andD! A.
(b) R(A;B;C; D) with functional dependenciesA! B,andA! C.

(c) R(A;B;C;D) with functional dependenciesA! B,andB ! C.

do the following:

() Find all the keys of R,

(b) Indicate all the BCNF violations.

(c) Decompose the relations, as necessary, into collectigrof relations that are in
BCNF. Say if the decomposition is dependency preserving.

(d) Indicate all the 3NF violations.

(e) Decompose the relations, as necessary, into collectierof relations that are in
3NF and are data preserving.

5. Consider the following poorly designed relational schem
Univinfo(studID, studName, course, profiD, profO ce)

Each tuple in relation Univinfo encodes the fact that the student with the given ID
and name took the given course from the professor with the gien ID and o ce.
Assume that students have unique ID's but not necessarily uigque names, and
professors have unique ID's but not necessarily unique o ce Each student has
one name; each professor has one o ce.

(a) Specify a set of completely nontrivial functional deperdencies for relation Uni-
vinfo that encodes the assumptions described above but no atitional assump-
tions.



¢ A. Albano 3.4 Relational Database Design: Normalization Theory 41

(b) Decompose relation Univinfo into BCNF according to your functional depen-
dencies in part (1).

(c) Now add the following two assumptions: (1) No student takes two di erent
courses from the same professor; (2) No course is taught by m®than one

professor. Modify your set of functional dependencies fronpart (a) to take
these new assumptions into account.



42

CHAPTER 3 Database: The Relational Designer Perspective

c A. Albano




Chapter 4

DBMS: THE USER
PERSPECTIVE

4.1 Objectives of a DBMS

The most common class of computer applications is used to ste, maintain,
and retrieve large quantities of persistent data, i.e. datathat are required to
last longer than the duration of the execution of the prograns using them. All
computerized information systems, whether in a public or pivate environment,
fall into this class.

During the 1950s and most of the 1960s, these kinds of applitans were
developed using programming languages withes, collections of homogeneous
records with the property of persistency. The responsibiliy for organizing and
maintaining data rested entirely on the application programmers. The logical
and physical structure of the data was described in the progams and the code
to manipulate the data was dependent on these structures. Inaddition, this
coupling of programs and data tended to make les speci c to ndividual ap-
plications, precluding the sharing of common data among redted applications.
Consequently, it was common to have multiple copies of the sae data which
comported problems of consistencies between di erent verens and ine cient
use of storage. Finally, the need for familiarity with programming languages in
order to use data, often prevented the end-users, i.e. non ogputer profession-
als, from getting direct access to the data without going through a programmer
intermediary.

In the late 1960s and early 1970s, a series of software systerwere devel-
oped to simplify the task of maintaining and accessing persitent data. These
systems began evolving to database management systems bynt&lizing the
control of data and providing a uniform interface to it: the system rather
than a user's application program has the responsibility f@ maintaining and
manipulating data by providing the application programs with a logical view
of the data, hiding the details of the structures employed tostore and access
them. In addition, to simplify the programming task of each user, the database
management system promotes the sharing of data among users.

The term database is sometimes used for any computerized dettion of
data. Here, we use a more narrow de nition which restricts the use of the
term to what is sometimes calledformatted data.



44

CHAPTER 4 DBMS: The User Perspective ¢ A. Albano

De nition 4.1.1 A database is a collection of persistent data, partitioned nto
two:

a) the schema, a collection of time-invariant de nitions which describe the
structure of admissible data, as well as constraints on ledadata values, i.e.
integrity constraints, (the intensional databasé;

b) the data, a time-variant representation of specic facts (the extensional
database, with the following characteristics:

- they are organized in sets, and associations are de ned beten these
sets using the abstraction mechanism of alata mode|

- they occur in large quantities and do not t in a conventional main
memory;

- they are persistent, i.e. once created, the data continue d exist until
being explicitly deleted;

- they are accessed by aratomic work unit (called transaction) which,
when executed, commits either all or none of the changes e ¢ed to the
extensional database;

- they are protected both from unauthorized users and from hadware and
software failures;

- they are shared concurrently by several users

All above features are guaranteed by @ata Base Management SysteniDBMS),
de ned as follows:

De nition 4.1.2 A DBMS is a centralized or distributed software system,
which provides the tools to de ne the database schema, to sett the data
structures needed to store and retrieve data easily, and to ecess the data,
interactively using a query language or by means of a programing language.

A more detailed presentation of the operational facilitiesprovided by a DBMSs
follows.

4.2 Functions of a DBMS

A DBMS will provide a number of di erent services and utiliti es. However,
some DBMSs, especially those designed for personal comptde provide only
a subset of the capabilities that will be discussed below. Foexample, in order
to keep the system price low, many small systems do not provie facilities for
concurrency control and data recovery. In general, howeversuch facilities are
considered essential in the computerized information sysms implemented in
medium-sized or large organizations.

4.2.1 Separation of Data Description and Data Manipulation

In programming languages, the data declarations and the exautable state-
ments usually constitute a single program module. With DBMSs, instead,
there is a separation of the database description, theschema from applica-
tion programs that use data. Several levels of data descripbn are supported:
physical level, logical level, logical view level

1. The term \user" is adopted throughout this paper to mean ei ther an end-user or an
application program which is performing data manipulation operations.



c A. Albano

4.2 Functions of a DBMS 45

The physical levelis the lowest level of abstraction at which the database is
described. This level contains the description of the data suctures used to
store and access the data. The principal data structures uskwill be discussed
in sections ??{??.

The logical leve| often called the conceptual level is the next level of ab-
straction and describes the logical structure of the data awl the relationships
established among them, i.e. the schema, using a language igh supports the
abstraction mechanisms of a particular data model. The langage used for the
classical data models | the hierarchical, network, and relational data models,
discussed below | is called the Data Description Language(DDL), since only
data are described in the database schema and not procedurakpects.

The logical view levelis the level at which that part of the entire database
which is accessible to a certain class of users is describeex{ernal schema.
There may be many views of the same database, and all of them arde ned in
terms of the schema given at the logical level. For example, dy some classes
may be accessible and only a subset of the attributes of an ateent are visible
for a particular user category. An external schema is not neessarily a subset
of a schema, it can also contain new classes, de ned in termd those actually
present in the database.

The description of the database at these dierent levels is gen by the
person responsible for creating the database, usually knawas the database
administrator (DBA), and the information in the schema is usually stored in
a system catalog described in the following, which constitutes an additioral
database that can be queried by users .

Example 4.1 The dierence between the levels of data description can be nder-
stood using an example of a relational database for universi employees. At the
logical level, the database structure is described in term®f the following table:

CREATE TABLE Persons (Name CHAR(30),
FiscalCode  CHAR(15),
Salary INTEGER,
Status CHAR(6),
Address CHAR(8))

At the logical view level, to the administration o ce and to t he library is not allowed
to access all the information in the table Persons but only a subset of them:

CREATE VIEW PersonsForAdministration AS
SELECT Name, FiascalCode, Salary, Status
FROM Persons

CREATE VIEW PersonsForLibrary AS
SELECT Name, Address
FROM Persons

A view is a table computed from others as we will see later.

Finally, at the physical level, the database designer selds a data organization
for each database table from a set of possible options, e.gsequential, hash or tree
structured organizations. However, the user of a class wilbe unaware of the physical
organization selected for this class:

MODIFY Persons TO HASH ON Name



46

CHAPTER 4 DBMS: The User Perspective ¢ A. Albano

These three levels of data description were proposed in 191 the ANSI/X3/
SPARC study group on DBMSs, with the aim of guaranteeing two important
properties: physical and logical data independence

Physical data independenceneans that modi cations to the physical database
organization will not imply modi cations to applications p rograms.

Logical data independencaneans that the mechanism used to de ne external
schemas should ensure that certain modi cations to the logtal schema, such
as adding new de nitions for example, will not comport changes to the appli-
cation programs, but simply a rede nition of the associated external schemas
in terms of the new logical schema. The only kind of change inHe logical
schema that cannot be re ected in a rede nition of an externa schema is the
deletion of information in the logical schema which correspnds to information
present in the external schema. Logical data independences ihighly desirable
because of the costs involved in software maintenance.

Although these three levels of data description are not supprted in most
DBMSs, some systems, for example the relational ones, havehypsical and
logical data independence.

4.2.2 Database Languages

The operators associated to the data model used to access oradify the
database constitute the so-calledData Manipulation Language (DML) of a
DBMS. Typically, the DML may be used either in a stand-alone mode as a
guery or update language, or it may be used in a host language aode, i.e.
embedded in a programming language.

There are two kinds of data manipulation operators:

- procedural, which are \record oriented", in the sense that they deliver one
record at a time and require that a user, wishing to retrieve aparticular
set of records, writes a procedure which implements an appmriate search
strategy to \navigate" through the database structure;

- nonprocedural or declarative, which are \set oriented", in the sense that
they deliver a set of records satisfying a condition and reqite a user to
characterize the data he wants, with the system assuming theesponsibility
for devising an appropriate search strategy.

In addition to query language and programming language intefaces for the
application programmer, a DBMS will o er a language for report generation,
i.e. alanguage in which the user can specify a query togethevith requirements
on the visual form of output, and a language fordata entry, i.e. a language
in which non-computer professionals can specify databasengy and update
on-line.

4.2.3 Data Control

A DBMS provides a number of facilities to control the physica and logical
integrity of data. These facilities are:

- access control which limits the kind of access to the database allowed to
a particular user. In fact, although the purpose of a DBMS is to facilitate
database sharing by users, this sharing must be selective.lie owner of data
should be able to specify the nature of the access privilegeslowed to those



c A. Albano

4.2 Functions of a DBMS 47

users who will access the data (i.e. read only or read/write)to allow certain
users to see only certain elds or certain records, or even tallow only a
view of aggregate values (such as averages);

- integrity control which prevents data which violate the constraints declared
in the database schema from being entered into the database;

- concurrency control which ensures that users simultaneously accessing a
database do not interfere with one another. In fact, when moe than one
user accesses the same data, unpredictable results can occu

Example 4.2 Let us assume that John and Jane have a joint savings accountrel
both go to di erent tellers. The current balance is $350. Jare wishes to add $400
to the account. John wishes to withdraw $50. Let us assume théollowing events
happen in the order in which they are shown:

Jane's teller reads $350,

John's teller reads $350,

Jane's teller writes $750,

John's teller writes $300,

The account now reads $300, and this certainly is not a corrgovay to allow more
than one person to use the same account.

- data recovery which entails restoring the database to a consistent state fier
the occurrence and detection of a failure. A database may b&tne incon-
sistent because of aransaction failure, a system failure or a media (disk)
failure.

De nition 4.2.1 A transaction is a sequential program with embedded database
operations and the following properties, often called the ACID properties:

- atomicity : only committed transactions change the database, if a trasac-
tion aborts, the state of the database should remain unchangd as if no
operations of the aborted transaction had occurred;

- persistency. the e ects of a committed transaction are permanent and mus
survive system and media failures, i.e. commitment is an irevocable act;

- serializability : when a transaction is executed concurrently with others, he
nal e ect must be the same as a serial execution of transactions that exe-
cute to completion; i.e. the DBMS behaves as if it executes th transactions
one at a time.

De nition 4.2.2 A transaction failure is an interruption of a transaction which
does not damage the content of both the temporary memory i§u ers) and the
permanent memory.

A transaction can be interrupted because (a) the program hasbeen coded
in such a way that if certain conditions are detected then an #ort must

be issued, (b) because the DBMS detects a violation by the trasaction of
some integrity constraint or access right, or (c) because itwas decided to
terminate the transaction since it was involved in a deadlo& detected by the
DBMS. When a transaction aborts, its actions are undone autenatically by the

recovery facility, restoring the database to the same state it had at beginning
of the transaction.

De nition 4.2.3 A system failure is an interruption (crash) of the system
(either the DBMS or the computer) in which the contents of the temporary
memory are lost, but the contents of the permanent memory remin intact.



CHAPTER 4 DBMS: The User Perspective ¢ A. Albano

Table Type of Information

SYSTABLES Information about the relational tables
SYSCOLUMNS | Information about the columns in tables and views
SYSVIEWS Information about views

SYSINDEXES Information about the indexes on tables
SYSKEYS Information about the keys on tables

Figure 4.1 Examples of system catalog tables

When a system crash occurs, the DBMS is restarted (automatially or by an
operator). The DBMS ensures that all transactions which wee not completed
at the time of the crash are undone, whereas all those which we completed
have their e ects reapplied to the database if necessary.

De nition 4.2.4 A media failure, or a catastrophe is an interruption of the
DBMS in which the contents of the permanent memory are lost.

When a media failure occurs, the recovery facility can use & historical data
to reconstruct the current database contents starting from a prior version of
the database.

Techniques used by DBMSs for concurrency control and data reovery will
be considered later.

4.2.4 A User-Accessible System Catalog

The system catalog (data dictionary or meta-data, the “data about data’)
is a special purpose database, maintained by the system, tatare data that
describe the structure of the objects in a database.

The catalog schema is designed by the DBMS vendor, and an inatce of
the catalog is created automatically whenever a new databasis created. The
catalog can be queried as any other databases. Examples oftabbg tables for
a relational DBMS are described in Figure 4.1.

4.2.5 Facilities for the Database Administrator

DBMSs provide important facilities for the data administra tor; he needs tools
to accomplish at least the following tasks:

- de nition of the database schema,;
- speci cation of integrity constraints;
- de nition of external schemas for di erent applications;

- de nition of data structures to improve the performance of the database
operations;

- granting of data access authorization to the various user®f the database;
- monitoring of DBMS performances and database tuning;

- restoring the database after a media failure and restructuing the database
when the schema changes.



c A. Albano

4.3 SQL: A Relational Database Language 49

4.3 SQL: A Relational Database Language

SQL (Structured Query Languagg is the most widely used relational database
language. An initial version was proposed in 1975, the stanard version is

called SQL-92, and recently was completed the SQL:99 versiofor object

databases. The purpose of the following sections is to intrduce just some
of its features, since a full treatment of the language is begnd the scopes of
this report.

4.3.1 The Data De nition Sublanguage

A relation schema is specied using the CREATE TABLE statement of SQL.
This statement has a rich syntax which we will not introduce here. As a bare
minimum, CREATE TABLE speci es the typing constraint: the name of a relation
and the names of the attributes with their associated types.However, the same
statement can also specify primary and candidate keys, folign key constraints,
and other semantic constraints.

The studentsrelation is de ned as follows:

CREATE TABLE Students (

Name CHAR(20) NOT NULL,
StudentCode  CHAR(8) NOT NULL,
City CHAR(20),

BirthYear INTEGER NOT NULL,
PRIMARY KEY (StudentCode),
UNIQUE (Name, BirthYear)
CHECK (BirthYear > 1900));

Null values are not allowed in keys. One additional feature b note is that a
default value can be speci ed for an attribute. This value will be automatically
assigned to the attribute of a tuple should the tuple be inseted without this
attribute being given a speci ¢ value. Semantic constraints are speci ed using
the CHECK clause.

A relation schema can be modi ed using the ALTER TABLE statement and
deleted with the DROP TABLE statement.

In relational databases, it is common for tuples in one relaion to reference
tuples in the same or other relations to model associationdlt is a violation of
data integrity if the referenced tuple does not exist in the gopropriate relation.
For example, it makes no sense to have &xamResultstuple with candidate
100 and not have the tuple with StudentCode = 100 in the relation Students
The requirement that the referenced tuple must exists is cded referential
integrity . One important type of referential integrity is the so-called foreign
key constraint.

The following example shows how foreign key constraints arepecied in
SQL:

CREATE TABLE ExamResults (

Subject CHAR(20) NOT NULL,
Candidate CHAR(8) NOT NULL,
Date CHAR(8) NOT NULL,

Grade INTEGER NOT NULL,

PRIMARY KEY (Subject, Candidate),
FOREIGN KEY (Candidate)
REFERENCES Students
ON DELETE NO ACTION);



50

CHAPTER 4 DBMS: The User Perspective ¢ A. Albano

The FOREIGN KEY clause has the optionON DELETE to specify what to do if a
referenced tuple is deleted NO ACTION means that any attempt to remove a
Students tuple must be rejected outright if the student is referencedby a Exam-
Resultstuple. The option ON DELETE CASCADEmeans that the referencing tuple
is to be removed too. The optionON DELETE SET NULL means that the foreign
key attributes in the references tuple must be set toNULL. Similar options are
provided for the option ON UPDATE. NO ACTION is the default situation when
ON DELETE or ON UPDATE is not speci ed.

More general remedial actions can be speci ed when a constirgs is violated
using the trigger mechanism: Whenever a speci cevent occurs, a speci ed
action is executed.

Besides ordinary tables, also virtual tables (calledviews) can be de ned with
the CREATE VIEW statement. A view can be queried as an ordinary table, but
its content does not physically exists in the database, instad, a de nition of
how to construct the view from ordinary database tables is gien as a query
with the CREATE VIEW statement and stored in the system catalog.

For example, the following view de nes the students of Pisa:

CREATE VIEW PisaStudents AS
SELECT Name, StudentCode, BirthYear
FROM  Students
WHERE City = 'Pisa’;

Access Control

Since databases often contain sensitive information, a DBM ensures that
only those authenticated users who are authorized to accedbe database are
allowed to and they are only allowed to access information tht has been
speci cally made available to them.

SQL provide the GRANT and REVOKE statements to allow security to be set
up on the tables in the database. When a user create a table heutomatically
becomes the owner of the table and receives full privilegeoif the table. To
allow other users the access to the table, the owner must exijgitly grant them
the necessary privileges using thesRANT statements:

GRANT  f privilegeList j ALL PRIVILEGES(g [(columnName [, columnName])]
ON objectName

TO f authorizationldList j PUBLIC g

[ WITH GRANT OPTION ]

Privileges are the actions that a user is permitted to carry ,m a given base
table or view (the objectName); examples are:

{ SELECT. To retrieve data from a table.
{ INSERT, MODIFY, DELETE: To insert, to modify or to delete rows.
{ REFERENCES To reference columns of a table in integrity constraints.

The INSERT, MODIFY, and REFERENCESprivileges can be restricted to specic
columns of a table. The WITH GRANT OPTION clause allows the users in the
authorization list to pass the privileges that they have to others users.

Example 4.3 Granting and revoking privileges to users:

GRANT  ALL PRIVILEGES
ON MyTable
TO MyFriend WITH GRANT OPTION;



4.3 SQL: A Relational Database Language 51

GRANT  SELECT, UPDATE(Grade)

ON Exams
TO Albano;
GRANT  SELECT
ON Students
TO PUBLIC;

REVOKE SELECT
ON Students
FROM PUBLIC;

4.3.2 The Query Sublanguage

The SELECT statement is used to retrieve data from relations. Suppose qu
wanted to retrieve from the Students table the information on student named
\Rossi". This is called making a query. To do it, you could issue the following
statement:

SELECT *
FROM Students
WHERE Name = 'Rossi’;

SELECT is a keyword telling the database that this is a query. The aserisk
means to retrieve all columns; alternatively, you could haw listed the desired
columns by name, separated by commas. ThEROM Students clause identi es
the table from which you want to retrieve the data.

WHERE Name ='Rossi'is a predicate, and all rows that make the predicateTRUE
are returned. This is an example of set-at-a-time operation The predicate is
optional, but in its absence the operation is performed on tle entire table, so
that, in this case, the entire table would have been retrievel. The semi-colon
is the statement terminator.

The relationship between SQL and relation algebra is as fotiws:

Set union: R[ S is equivalent to

SELECT *
FROM R
UNION
SELECT *
FROM S;

Set dierence: R S is equivalent to

SELECT *
FROM R
EXCEPT
SELECT *
FROM S;

Projection:  a;:a,::A, (R) is equivalent to

.....

SELECT DISTINCT A1;A2;:::;Am
FROM R;



52

CHAPTER 4 DBMS: The User Perspective ¢ A. Albano

Selection: congition (R) is equivalent to

SELECT *
FROM R
WHERE Condition;

Product: R S is equivalent to

SELECT *
FROM R;S;

Join: R R:Ai/: sa, S Is equivalent to

SELECT *
FROM R;S
WHERE R:A; = SIAj;

Natural Join: R / S is equivalent to

SELECT *
FROM R NATURAL JOIN S;

Nulls and Three-Valued Logic

With predicates, a three-valued logic is used. In SQL, the baic Boolean values
of TRUE and FALSE are supplemented with another:NULL, also calledUNKNOWN.
This is because SQL acknowledges that data can be incomplet inapplica-
ble and that the truth value of a predicate may therefore not be knowable.
Speci cally, a column can contain a null, which means that there is no known
applicable value. A comparison between two values using rational operators
{ for example, a =5 { normally is either TRUE or FALSE. Whenever nulls are
compared to other values, however, including other nulls, he boolean value is
neither TRUE nor FALSE but itself NULL.

In most respects,NULL has the same e ect asFALSE. The major exception
is that, while NOT FALSE = TRUE, NOT NULL = NULL . In other words, if you
know that an expression iSFALSE, and you negate it, then you know that it
is TRUE. If you do not know whether it is TRUE or FALSE, and you negate it,
you still do not know. In certain cases, three-valued logic an create problems
with your programming logic if you have not accounted for it. You can treat
nulls specially in SQL with the 1S NULL predicate.

Aggregation over Data

SQL provides ve built-in functions, called aggregate functionswhich operates
on set of tuples. They are:

{ COUNT([DISTINCT] Attr) : Count the number of values in column Attr of the
query result. The optional keyword DISTINCT indicates that each value
should be counted only once, even if it occurs multiple timesin di erent
answer tuples.COUNT(*) counts the number of tuples of the query result.

{ SUM([DISTINCT] Attr) : Sum up the values in columnAttr of the query result.
DISTINCT indicates that each value should contribute to the sum only
once, regardless of how often it occurs in colummntr .



c A. Albano

4.3 SQL: A Relational Database Language 53

{ AVG([DISTINCT] Attr) : Compute the average of the values in colummittr of the
query result. Again DISTINCT means that each value should beused only
once.

{ MAX(Attr), MIN(Attr)y : Compute the maximum or the minimum value in the
column Attr.

For example, the following query returns the number of studets tuples:

SELECT  COUNT(¥)
FROM Students;

The following query returns the average birth year of studerts:

SELECT  AVG(BirthYear)
FROM Students;

Note that it is not possible to mix an aggregate function and an attribute in
this form of SELECT, as in

SELECT Name, AVG(BirthYear)
FROM Students;

To write such kind of SELECT the GROUP BY clause must be used:

SELECT Name, AVG(BirthYear)
FROM Students
GROUP BY  Name;

GROUP BY partition a set of tuples into groups whose membership is chaac-
terized by the fact that all of the tuples in a single group agree on the values
in the speci ed set of attributes. The aggregate function then applies to the
groups and produces a single value for each group. The resuié a relation
having two attributes, the student name and the average birth year. The im-
portant point is that each column in the SELECT clause either must be in the
GROUP BY clause or must be the result of an aggregate function.

The HAVING clause is used in conjunction withGROUP BY: It is used to specify
a condition that restricts which groups (speci ed in the GROUP BY clause) are
to be considered for the nal query result. Groups that do not satisfy the
condition are removed before the aggregates are applied.

SELECT Name, AVG(BirthYear)
FROM Students

GROUP BY Name

HAVING COUNT(*) > 0;

The HAVING condition (unlike the WHERE condition) is applied to groups, not
to individual tuples (Figure 4.2).

Finally, the order of tuples in the query result is generally unpredictable. If
a particular ordering is desired, the ORDER BY clause can be used:

SELECT Name, BirthYear
FROM Students
ORDER BY Name;

Ascending order is used by default, but descending order caalso be speci ed:

SELECT Name, BirthYear
FROM Students
ORDER BY DESC Name;



54 CHAPTER 4 DBMS: The User Perspective ¢ A. Albano

"#'$%&&&&&&E (()*+&,,)-,.(-*

HSW& () -] |:>
012$2""™ $(3-45/'6-.5,+,-.

/01238&45&& /)678&(()*

9";</&&&&&&& )678&$6=>?(?6=

g 4 1

I"H'SUREEEEEE '(()*+&,,)-,.(-*
@01A&&&&&&&&EEE 0-B.(26=*

C9"0"8&888&&&&& 0-DB)>*&$6=>7(?6= |:>
T$%89L" T4~ <'=++4/

9';</8&&&E&E&S: 1)67BRSE=>7(?6=

I"H'B%EEEEEESE (J+&!,,)-,.(-*
@01A88&&&EEEEREE O-B.(26=*

C9"0"8&&&&&&& 0-D6)>*&$6=>7(?6= |:>
1012384588 /)6788&(()*

1=>2@7""™" 74-<'6-.5+,-.

A2B26C""" =++4/D'=EE4(E*+(/

@01A&R&&&&&&&&E 0-B.(76=*

C9"0"8&&&&&&& 0-D6)>*&$6=>7(?6= |:>

1012384588 /)678&'(()*

9";</&&&&&E&SE 1)6788$6=>7(?6= e
$(/;)+

0 [0 o [wom -

U 1 O ([

Figure 4.2 Query evaluation withGROUP BY

Nested Queries

Nested subqueries increase the expressive power of SQL, bate one of the
most complex, expensive, and error-prone feature of SQL.
Consider the querylist the student code of the students who did not pass any

exams
SELECT StudentCode
FROM Students
WHERE StudentCode NOT IN (

== Students who have passed an exam
SELECT Candidate
FROM ExamResults ) ;

Another useful operator is EXISTS to check if a nested subquery returns no
answer. For example, here is another formulation of the abaw query:

SELECT StudentCode

FROM Students s

WHERE NOT EXISTS (
== All exams passed by a student
SELECT *
FROM ExamResults

WHERE Candidate = s.StudentCode) ;

4.3.3 Modifying Relation Instances

Relation instances are modi ed with the operatorsINSERT, UPDATE, and DELETE.
INSERT places rows in a table,UPDATE changes the values they contain, and
DELETE removes them.



c A. Albano

4.3 SQL: A Relational Database Language 55

For INSERT, you simply identify the table and its columns and list the values,
as follows:

INSERT INTO Students (Name, StudentCode, City, BirthYear)
VALUES (‘'Rossi', '01234', 'Pisa’, 1990);

This statement inserts a row with a value for every column but If a value is
speci ed for every column of the table, and the values are gign in the same
order as the columns in the table, the column list can be omited. A SELECT
statement can be used in place of the/ALUES clause of theINSERT statement
to retrieve data from elsewhere in the database.

UPDATE is similar to SELECT in that it takes a predicate and operates on all
rows that make the predicate TRUE. For example:

UPDATE Students
SET City = 'Florence'
WHERE Name = 'Rossi’;

This sets to "Florence' the city for the student named "Rossi The SET clause
of an UPDATE command can refer to current column values. \Current" in thi s
case means the values in the column before any changes were deaby this
statement.

DELETE is quite similar to UPDATE. The following statement deletes all rows
for students from "Pisa":

DELETE FROM Students
WHERE City = 'Pisa’;

You can only delete entire rows not individual values. To do te latter, use
UPDATE to set the values to null. Be careful with DELETE that you do not omit
the predicate; this empties the table.

4.3.4 Executing SQL Statements within Application Program s

In the previous sections, we discussed SQL as an interactitanguage: you type
in a query and the see the results on your screen. In order to vite application
programs, SQL statements must included in some conventioddanguage, such
as C, COBOL, Java or Visual Basic. The main problem to solve ighe fact that
a mismatch exists between the data structures of the programming language,
which operates on records, and those of SQL, which operatesiagelations, i.e.
sets of records. Therefore, a mechanism is required to suppthe result of an
SQL expression to the programming language, one element at time.

The standard solution is to declare acursor for each query to be evaluated:
a cursor is a \logical pointer" that ranges over all the tuples of the result of
an SQL statement. To evaluate an SQL statement, the cursor isopened, and
then, using a fetch operator, the \next" tuple of the result is retrieved, the
components of each tuple are copied into a list of variablesfahe host language
program, and the cursor is advanced to point to the next tuple An exception
is raised when a fetch is attempted beyond the last tuple of tle result.

SQL statements can be included in an application program in hree di erent
ways:

1. Extended language The language is a superset of SQL, supplementing it
with standard programming-language features that includethe following:
block (modular) structure, ow-control statements and loo ps, variables,



CHAPTER 4 DBMS: The User Perspective ¢ A. Albano

constants, and types, structured data, and customized errohandling. The
language compiler can control completely that SQL statemets are well
formed. A notably example is Oracle PL/SQL.

Let us illustrate the approach by showing two programs which print the
name and birth year of the students of Pisa. The rst example (Figure 4.3)
use the standard cursor, while the second example use a spacconstruct
FOR with an implicit cursor (Figure 4.4).

PROCEDURE Examplel (Cty IN Students.City%TYPE) IS
DECLARE
CURSOR c IS
SELECT Name, BirthYear
FROM  Students WHERE City = Cty;
Stud_Rec c%ROWTYPE;
BEGIN
{ retrieve a set of records
OPEN c
LOOP
FETCH ¢ INTO Stud_Rec;
EXIT WHEN c%NOTFOUND;
PRINT ... Stud_Rec.Name ... StudRec.BirthYear ...
END LOOP;
CLOSE c { cursor is released

Figure 4.3 A PL/SQL example with cursor

PROCEDURE Example2 (Cty IN Students.City%TYPE) IS
BEGIN
FOR StudRec IN (
SELECT Name, BirthYear
FROM  Students WHERE City = Cty)
LOOP
PRINT ... Stud_Rec.Name ... StudRec.BirthYear ...
END LOOP; { cursor is released
END

Figure 4.4 A PL/SQL example with implicit cursor

2. Application programming interface (API) . Rather than design a new com
piler, a standard programming language is used with a libray of functions
(API) which accept string SQL as parameter. Since SQL statenents are
passed to a function as strings, they cannot be controlled sttically by the
compiler, but are controlled dynamically by the DBMS. Micro soft's ODBC
is the C/C++ standard API on Windows while Sun's JDBC is the Ja va
equivalent. The APl are DBMS-neutral and a driver traps the calls and
translates them into DBMS-speci ¢ code.

Let us illustrate the approach by showing a Java program whif print the
name and birth year of the students of Pisa using the JDBC API (Fig-
ure 4.5).

3. Embedded SQL SQL statements can be used within a host language pro-



¢ A. Albano 4.3 SQL: A Relational Database Language 57

class PrintStudentsNamé
public static void main(String argv[]¥
Class.forName("DBMS driver");
Connection con = // connect
DriverManager.getConnection("url", "login", "psw");
Statement stmt = con.createStatement(); / set up stmt
String query = "SELECT Name
FROM  Students
WHERE City =" + argv[0] + " ";
ResultSet iter = stmt.executeQuery(query);
System.out.printin("Names retrieved:");
try f // to handle exceptions
I/l loop through result tuples
while (iter.next()) f
String name = iter.getString("Name");
int year = iter.getint("BirthYear");
System.out.printin(* Name: " + name + "; BirthYear: " + year);

g
g catch(SQLException ex)f
System.out.printin(ex.getMessage() + ex.getSQLState() +ex.getErrorCode());

g
stmt.close(); con.close();
g9

Figure 4.5 An example of API

gram. Before the program can be compiled by the host languageompiler,
the SQL statements must be processed by a pre-compiler, whiccheck SQL
syntax, the number and types of arguments and results, and rglace them
into calls to a library of functions. At runtime these functi ons communicate
with the DBMS.

Let us illustrate the approach by showing a C program which piints the
name and birth year of the students of Pisa (Figure 4.6).

Figure 4.7 shows the same example i8QLJ, is a dialect of embedded SQL
that can be included in Java programs. The pre-compiler rephce SQLJ con-
structs by call to a library which accesses a database usingatls to a JDBC
driver.

The statement #SQL iterator GetInfoStlte ... in the gure tells the pre-compiler
to generate a clasSGetinfoStite which implements an iterator with the next()
method. The classGetinfoStite is used to store result sets in which each row
has two columns: a string and an integer. The declaration gies a Java hame
to these columns,Name and Year, and implicitly de nes the column accessor
methods, Name() and Year(), which can be used to return data stored in the
corresponding columns.

4.3.5 Exercises
1. Give a relational schema in SQL for the following databass:

(&) Your solution to Exercise 3.3.1(1).
(b) Your solution to Exercise 3.3.1(2).

2. Give a relational schema in SQL for your solution to Exercse 3.3.1(3), and write
the following queries:

() Retrieve the birth-date and name of the female employees



58

CHAPTER 4 DBMS: The User Perspective

c A. Albano

char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
char c.sname[20]; short cBirthYear;
EXEC SQL END DECLARE SECTION
short c_City = "Pisa";
EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.name, S.BirthYear
FROM Students S
WHERE S.City = :c_City
ORDER BY S.name;
dof
EXEC SQL FETCH sinfo INTO :csname, :cBirthYear;
printf("Name:%s; BirthYear: %s ", c_sname, cBirthYear);
g while (SQLSTATE != 02000);
EXEC SQL CLOSE sinfo;

Figure 4.6 An example of embedded SQL

public static void main(String argv[]¥
Oracle.connect("jdbc:oracle:oci8:@", "scott", "tiger");

#SQL iterator GetInfoStlter(String Name, int Year);
GetlnfoStlter iter;

#SQL iter = f
SELECT Name, BirthYear AS Year
FROM Students
WHERE City =:(argv[0]) g;

System.out.printin("Students retrieved");
while (iter.next()) f
String name = iter.Name();
int year = iter.Year();
System.out.printin(* Name =" + name + " Year =" + year);
g

iter.close();
Oracle.close();g

Figure 4.7 An example of SQLJ



¢ A. Albano 4.3 SQL: A Relational Database Language 59

(b)

(©)
(d)

(e)
(f)

(9)

(h)

0
()
(k)
o
(m)

(n)

(0)
(V)

(a)

For each employee, retrieve the employee name and the naenof the depart-
ment where he works.

Retrieve the distinct salary of every employee.

Retrieve the names and the ages of female employees old#itan their super-
visor.

Retrieve the names of all employees who do not have supésors.

Retrieve the name and address of all employees who work fdhe \Research"
department.

For every project located in \Pisa", list the project num ber, the controlling
department number, and the departament manager's name, adess, and birth-
date.

Make a list of all projects numbers for projects that involve an employee whose
last name is Smith, either as a worker or as a manager of the deptment that
controls the project.

Retrieve the names of employees who have no dependents.

List the names of supervisors who have at least one deperedht.

For each employee, retrieve the employee's name and theame of his or her
immediate supervisor.

Retrieve the name of each employee who has a dependent wiitthe same rst
name and sex as the employee.

Retrieve a list of employees and the projects they are wdking on, ordered by
department and, within each department, ordered alphabettally by name.

Find the sum of the salaries of all the employees of the Re=arch department,
as well as the the maximum salary, the minimum salary, and theaverage salary
in this department.

For each department, retrieve the department number, the number of employ-
ees in the department, and their average salary.

For each project on which more than two employees work, r&ieve the project
number, the project name, and the number of employees who wéron the
project.

For each project, retrieve the project number, the project name, and the num-
ber of employees from department 5 who work on the project.

(r) For each department having more than ve employees, retieve the department

()

number, the number of employees making more than 40.000.

Retrieve the name of each employee who has all dependentsth the same sex
as the employee.

(t) Retrieve the name of each employee who has all dependentsith the same

(u)

Sex.

Retrieve the names of the employees who work only to projets for 20 percent-
time.

(v) Retrieve the name of each employee who work only on projds controlled by

(W)

department number 5.

Retrieve the name of each employee who work only on projds controlled by
the same department.

(x) Retrieve the name of each employee who work on all the practs (and only

those) to which the employee 100 participates.



60

CHAPTER 4 DBMS: The User Perspective

c A. Albano




