
Databases Essentials
Antonio Albano

University of Pisa
Department of Informatics

Largo B. Pontecorvo 3, 56127 Pisa { Italy
albano@di.unipi.it

September 23, 2011

CONTENTS

1 Introduction 1

2 Database: The Conceptual Designer Perspective 5
2.1 What to Model . 6
2.2 How to Model . 8
2.3 ODM: An Object Data Model 8

2.3.1 Object . 8
2.3.2 Type . 9
2.3.3 Class . 9
2.3.4 Relationship . 10
2.3.5 Inheritance and Type Hierarchies 11
2.3.6 Class Hierarchies . 11

2.4 Exercises . 14

3 Database: The Relational Designer Perspective 17
3.1 The Relational Data Model . 17
3.2 Relational Algebra . 19

3.2.1 Fundamental Operations 19
3.2.2 Additional Operations 21
3.2.3 Equivalence rules . 23

3.3 Relational Database Design: ODM-to-Relational Mapping . . . 25
3.3.1 Exercises . 27

3.4 Relational Database Design: Normalization Theory 27
3.4.1 Functional Dependencies 31
3.4.2 Inference Rules . 32
3.4.3 Closure of a Set of FDs 32
3.4.4 Covers of Sets of Dependencies 33
3.4.5 Schema Decomposition 34
3.4.6 Dependency Preserving Decomposition 35
3.4.7 Normalization Using Functional Dependencies 36
3.4.8 Polynomial Algorithms to Normalize in 3NF and BCNF 37
3.4.9 Multivalued Dependencies and Fourth Normal Form . . 38
3.4.10 Exercises . 40

ii CONTENTS c
 A. Albano

4 DBMS: The User Perspective 43
4.1 Objectives of a DBMS . 43
4.2 Functions of a DBMS . 44

4.2.1 Separation of Data Description and Data Manipulation 44
4.2.2 Database Languages . 46
4.2.3 Data Control . 46
4.2.4 A User-Accessible System Catalog 48
4.2.5 Facilities for the Database Administrator 48

4.3 SQL: A Relational Database Language 49
4.3.1 The Data De�nition Sublanguage 49
4.3.2 The Query Sublanguage 51
4.3.3 Modifying Relation Instances 54
4.3.4 Executing SQL Statements within Application Programs 55
4.3.5 Exercises . 57

Chapter 1

INTRODUCTION

The importance of information in today's society is widely recognized. In this
report, the attention will be focused particularly on the need for information
management inorganizations, considered as an organic collection of resources
(people and materials), tools and procedures, which are �nalized to create
and o�er a product or a service. For example, a manufacturer converts raw
materials into a �nished product, a bank provides �nancial services, and a
hospital supplies medical services.

Nowadays, information is considered to be a critical resource of any organi-
zation, as fundamental as capital or machinery, and, in fact, the majority of the
labor force in the industrialized countries works in some way with information.

Since organizations operate in a competitive environment,their information
must not only be accurate but must also be provided rapidly, in time to support
the decision processes. For this reason, all organizationshave a structure which
is dedicated to the management of information, theinformation system: an
organized collection of resources, people, and procedures�nalized to collect,
store, process and communicate the information needed to support the on-
going activities.

Information can be represented as data, images, text, and voice. Clearly, dif-
ferent kinds of organizations will have di�ering needs with respect to the types
of information they use. However, the attention here will be on information
represented asstructured data, shared by a variety of users within an organi-
zation, and managed using computers. Reductions in the costs of computer
technology, improvements in performances, and new facilities to support the
development of applications have created an increasing demand for data pro-
cessing systems. We use the termcomputerized information systemto refer to
the hardware and software which is used for storing, retrieving, and processing
the information which supports the functions of an organization1.

When a computerized information system is implemented using database
technology, it will consist of an operational databaseand a collection ofappli-
cation programs (transactions) which are used to access and update the data
quickly and e�ciently (Figure 1.1). The main goal of such a tr ansaction pro-
cessing system is to maintain the correspondence between the database and

1. Frequently in the literature, \information system" is us ed as synonym of \computerized
information system". Here, we prefer to make a distinction b etween the two terms to evi-
dence the fact that a \computerized information system" wil l never completly substitute
the global \information system" of an organization.

2 CHAPTER 1 Introduction c
 A. Albano

the real-world situation it is modeling as events occur in the real world.

!"#$%&$'%

()*+)(

,--!./,0.12+

.3453&"67

89:;3<=5%"96'5%

,''"93&$3#

+;>5%<;3?<
($%&6$@9&$"3

-6"?9'&$"3

Figure 1.1 Transaction processing system

The data are under the control of aData Base Management System(DBMS),
a centralized or distributed software system, which provides the tools to de-
�ne the database, to select the data structures needed to store and retrieve the
data easily, and to access the data, interactively or by means of a programming
language.

Another application domain in which databases play a key role is Decision
Support. The main goal of such applications is to turn the data into information
useful to support management decisions. Three categories of decision support
are reporting data, analyzing data, and knowledge discoverywith data mining
techniques.

Decision support applications, sometimes calledonline analytic processing
(OLAP), involve quite complex queries which cannot be e�ciently executed
against operational databases, optimized foronline transaction processing(OLTP).
For this reason, organizations maintain a separate database, calleddata ware-
house, speci�cally organized for such complex OLAP queries.

This report presents and discusses the principal topics in the database area.
The emphasis is on the concepts underlying database languages, systems and
design. The discussion is organized into three main sections: database from
the designer perspective, DBMS from a user perspective, andDBMS from a
system perspective.

Section 4 presents introductory and fundamental concepts regarding infor-
mation modeling. The problem of building a symbolic model ofthe knowledge
on some aspect of the world is addressed and an object formalism is introduced
to de�ne this model. The formalism is used to explain the basic concepts used
in the rest of the paper. The basic features of therelational model is also
presented. The emphasis will be on the relational model since it has gained
wide acceptance among database researchers and practitioners and has a solid
theoretical basis. Moreover, an overview is given of the fundamental results of
normalization theory to design relational databases.

Section 3, DBMS from a user perspective, presents the functionality of
a DBMS: the separation of database description and application programs;
database languages; data control; facilities for the database administrator. A
large part of the presentation is devoted to the most important feature charac-
terizing a DBMS: the data model it supports, i.e. the abstraction mechanisms

c
 A. Albano 3

used to model the databases. The basic features of the relational language
SQL are also presented to de�ne and use databases. The inclusion of SQL
statements in a program written in a conventional programming language is
also discussed.

4 CHAPTER 1 Introduction c
 A. Albano

Chapter 2

DATABASE: THE CONCEPTUAL
DESIGNER PERSPECTIVE

The notion of model is fundamental to all methods of analysisand design.
A model reproduces the essential characteristics of a real world situation,
ignoring those details which would only represent an unnecessary complication
with respect to the speci�c scope of the study being undertaken. A model is
used for explicative or descriptive purposes (descriptive models), to predict
actions and events (predictive models), or to provide recommended courses
of actions (normative models). Models are distinguished by their structure:
an iconic model retains some of the physical characteristics of the entities
represented (e.g., a scale model car in a wind tunnel), whereas a symbolic
model uses symbols to describe the real world. Symbolic models areused in
the analysis and design of information systems and we de�ne them as follows:

De�nition 2.0.1 A symbolic model is a subjective formal representation of
ideas and knowledge about a phenomenon.

Three fundamental aspects of this de�nition must be underlined: a) a model is
a representation of only some aspects of a phenomenon; b) therepresentation
is given by a formal language; c) the model is the result of an interpretation
process which depends on the knowledge already possessed bythe interpreter.

Computer science o�ers di�erent formalisms which can be used to build sym-
bolic models and, in particular, to represent information e�ectively, at varying
degrees of detail. Di�erent features vary in signi�cance at di�erent levels of
abstraction. This is well illustrated, for instance, by a book of road maps. In
planning a route, a traveller will look at the front of the boo k which may well
list the major cities and the numbers of the page where more detailed informa-
tion can be found. Looking at the relevant page, he �nds the major roads with
towns represented as shaded areas. At the back of the book, detailed street
maps which pinpoint the destination more closely are often found. Clearly,
in this case, there is a need for each type of representation,according to the
particular problem to be solved.

We will thus �rst consider the kind of knowledge for which we wish to build
a computerized information system, we will then show a graphic formalism
which can be used to build models to analyze information systems, i.e. to build
a static representation of the information content of a system, and �nally we

6 CHAPTER 2 Database: The Conceptual Designer Perspective c
 A. Albano

will present a formal language which can be used to implementthe model. The
emphasis will be on the construction of aconceptual model, i.e. on a model
built using a formalism which is suitable for natural and dir ect modeling. The
examples in the following sections mainly refer to a simpli�ed library or a
university administration system.

2.1 What to Model

When constructing a computerized information system, the reality to be mod-
eled is generally considered with respect to:concrete knowledge, abstract knowl-
edge, procedural knowledge, dynamics, and communications.

Concrete knowledgeconcerns speci�c facts known of the system to be rep-
resented. Adopting a simpli�ed point of view, we will assumethat the reality
consists ofentities, with certain characteristics or properties, and of relation-
ships betweenthe entities, which evolve over time.

De�nition 2.1.1 An entity is anything for which certain facts should be recorded,
independently of the existence of other entities.

In a library administration system, for instance, examplesof entities can be a
bibliographic description, a book, a loan record or a user.

De�nition 2.1.2 A property is a fact about an entity which is not meaningful
in itself, but only because it describes an entity of interest.

Examples of properties in a library are the user's name and address. The dif-
ference between a property and an entity results from a di�erent interpretation
of the represented fact in the model: properties are facts which are of interest
only because they describe other facts which are consideredas entities.

Entities with the same properties are said to have the same type and they
are classi�ed into the same collection (called also entity set). For instance,
John, Mary, and Ann may be classi�ed into the collection Persons based on
the fact that they have the same properties and represent humans.

Collection of entities with the same type are certainly an important aspect
of the knowledge about the reality to be modeled, but much more information
is carried by facts which establish associations among entities.

De�nition 2.1.3 A relationship is a fact which correlates independent entities.
As with entities, a collection of similar relationships is called relationship set.

In the library, examples of relationships between entitiescan be the fact that
a bibliographic description refers to a book, or more than one book if more
than one copy of the same book exists, or the fact that the userSmith has
borrowed a copy of a particular book.

A relationship is usually binary, that is involves two entities, but in general
it may be n-ary. Moreover, several relationship sets might involve the same
entity sets.

If we take a picture of a given time slice of the reality, the entities of interest,
the values of their properties and the relationships in which they participate
constitute a state of this reality. In general, the reality undergoes changes
because entities are subjects of processes. These may be continuous processes
or discrete event processes such as a change in the address ofa user, the loan
of a book, the acquisition of a new book, etc.

c
 A. Albano 2.1 What to Model 7

Abstract knowledgeconcerns general facts which impose restrictions on the
admissible values of the concrete knowledge and on the way inwhich the values
of the concrete knowledge can evolve in time, or expresses rules to derive new
information (integrity constraints).

In the library, examples of abstract knowledge are (a) the user proper-
ties Name, and Address, which must have values of typestring, whereas the
BirthYear property will have values of type integer, (b) a book can be bor-
rowed for two weeks, and two one-week extensions are allowed, if the extension
is performed before the due data, (c) any person may have on loan at most
�ve books at any time; the title of a book cannot be changed (d) the age of a
person is computed as the di�erence between the current yearand the year of
birth.

Relationships usually have certain constraints that limit the possible corre-
lated entities. The most important ones are the so calledstructural constraints
or properties:

{ Cardinality , one or many, to specify how many entities of one collection
may be associated with entities of another collection.

{ Partecipation, total or partial , to specify whether an entity of one collection
can have entities of another collection associated to it.

For example, a book is borrowed by at most one person, but a person can
borrow several books (the relationship is saidone-to-many or 1:N). In contrast,
the relationship AppearsIn between authors and bibliographic descriptions, in
which an author has written several books and a book has been written by
several authors, is said to bemany-to-many or N:M. A book must be related
to a bibliographic description (total), but a bibliographi c description may not
be related to a library book (partial).

Procedural knowledgeconcerns the elementary actions (or operations) in
the application environment which are applied to concrete knowledge to cause
changes. It must be understood that concrete knowledge is about the structure
of the entities and procedural knowledge is about theirbehavior. Moreover,
while abstract knowledge imposes restrictions on possiblevalues of concrete
knowledge, procedural knowledge imposes restrictions on the possible ways in
which concrete knowledge can be used or modi�ed.

Examples of elementary actions for a university student are: enroll, graduate,
change address, and change telephone number.

Dynamics concerns how concrete and procedural knowledge can be used to
model complex activities in the application environment.

Dynamics regards changes in the reality triggered by eventsand accom-
plished by standard procedures. An example of such a procedure in a uni-
versity situation is: When a professor moves to another university, then stop
salary; exclude the professor from mailing lists (usually more than one); for
each course held by the professor, start procedure to assignnew professor; for
each commission of which the professor was a member, start procedure for
new nominations; etc.

Finally, communications concern how information is entered in the informa-
tion system and is exchanged among members of the organization.

For the sake of simplicity we will not consider in the following, procedural
knowledge, dynamics and communications.

8 CHAPTER 2 Database: The Conceptual Designer Perspective c
 A. Albano

2.2 How to Model

To construct a conceptual model of an information system we de�ne the
schema, a collection of time-invariant de�nitions which model respectively
(a) the structure of admissible data, as well as integrity constraints, (b) the
procedural knowledge (intensional aspects). The creative part of conceptual
modeling is deciding what collection of entities, relationships, and constraints
to include in the schema to model the observed reality. So, this modeling activ-
ity requires a good deal of creativity, technical expertise, and understanding of
the application domain. After the conceptual schema has been de�ned, there
are straightforward ways of converting the design into an implementation, as
it will be shown later.

Di�erent formalisms, each supporting a speci�c data model, can be used to
de�ne the conceptual schema.

De�nition 2.2.1 A data model is a set of abstraction mechanisms, with asso-
ciated operators and implicit integrity constraints, used to de�ne a database
schema.

As a �rst example of a data model, let us examine the features of a so-called
object data model (ODM), with abstraction mechanisms to model the user's
conceptualization of the application domain, naturally and directly. This kind
of data model was originally proposed as a formalism for the analysis and
design of information systems, but nowadays such model is also supported by
a new generation of DBMS, as it will be shown in Section 5.1.

2.3 ODM: An Object Data Model

The basic abstraction mechanisms of an object data model (ODM) are: object,
type, class, relationship, inheritance, type hierarchies, and class hierarchies.
For simplicity, in this section we will only describe how structural aspects
of the reality can be modeled using a graphic formalism; in the Section 5.1,
languages supporting the abstraction mechanisms of an object data model will
be shown, and examples of how to model procedural knowledge will also be
given.

2.3.1 Object

An object is the computer representation of certain facts about an entity of
the observe world. An object is a software entity which has aninternal state
(instance variables) and it is equipped with a set of local operations (methods)
to manipulate that state. The request to an object to executean operation is
called a message, to which the object can reply. The structure of an object
state is modeled by a set of variables (orattributes) which can have values
of arbitrary complexity, including other objects which become components of
the object. When the state of an object can only be accessed and modi�ed
through operations associated to that object, we say that the object is adata
abstraction or that it encapsulateits state.

Finally, each object is distinct from all other objects and has an identity
that persists over time, independently of changes to the value of its state, e.g.,
if X and Y are identi�ers bound to objects of type T, X will be equal to Y if
they are bound to the same object. For instance, the object representing the

c
 A. Albano 2.3 ODM: An Object Data Model 9

person John is di�erent from any other object representing another person,
but will remain the same even if his address or some other attribute changes.

2.3.2 Type

An object is an instance of a type de�ned with a generative type constuctor,
i.e. each object type de�nition produces a new type, which isdi�erent from
any other previously de�ned types. An object type describesthe state �elds
and the implementation of methods of its possible instances. An object type
de�nition introduces a constructor of its instances, and so an object can be
constructed only after its object type de�nition has been given.

In the object programming context this approach to objects is calledclass-
based since the description of objects is called aclass; we prefer the term
\type" since we will use \class" with a di�erent meaning acco rding to the
database tradition.

The signature +T of an object type T is the set of label-type pairs of the
messages which can be sent to its instances.

Each object is a value of a certain type and objects of the sametype have the
same properties, i.e. they have the same structure and the same operations,
speci�ed by the type de�nition. The operations (the methods) to manipulate
the state are speci�ed by giving a speci�c implementation (concrete behavior)

The type mechanism makes it possible to create many objects of the same
type using an appropriate constructor.

Example 2.1 Figure 2.1 shows a graphic representation of types.1 Attributes are
represented by the pair (Name : Type). Attributes can be multivalued (have a type seq
T; they can be optional, meaning that the value can be left unspeci�ed. Methods are
represented by (Name (Parameters) := Body).

!"#$%& '()*+,
-*)(./"($%& 0"($
1234$+5"+,6",$'%& '$7&'()*+,
89+$)8:% ;")

!"#$%&'

Figure 2.1 A graphic representation of object types

2.3.3 Class

An object data model supports a mechanism to de�ne a collection of homoge-
neous values to model multivalued attributes or collections of objects to model
databases. Usually two di�erent mechanisms are provided:

1. To model multivalued attributes, type constructors are available for bags,
lists (or sequences), and sets. For the sake of simplicity wewill only consider
sequences.

1. Currently there is no standard notation for an ODM model. M ost books use the ER
notation. We instead use a notation based on UML (Uni�ed Mode lling Language).

10 CHAPTER 2 Database: The Conceptual Designer Perspective c
 A. Albano

2. To model databases a mechanism calledclass is provided. A class is a
modi�able sequence of objects with the same type. A class de�nition has
two di�erent e�ects:

{ It introduces the de�nition of the type T of its elements and a construc-
tor for values of this type (intensional aspect).

{ It supplies a name to denote the modi�able sequence of the elements of
type T currently in the database (extensional aspect).

We assume that when an object with the type of the elements of aclass is
constructed, then the object will itself become an element of that class.

2.3.4 Relationship

Classes of objects model sets of entities of the observed world, while relation-
ships between such entities of are represented with a separate mechanism as
shown with the following axamples.

Example 2.2 Figure 2.2 shows a graphic representation of classes with di�erent level
of details: (a) class name only, (b) class name and the attributes of its elements, and
(c) class name, the attributes of its elements together withtheir values type.

A binary relationship between classes is represented by an oriented arc (Figure 2.3a).
The arc is labeled with the relationships name. A binary relationship with attributes
is represented by a relationship class attached to the arc using a dashed line (Fig-
ure 2.3b). The arcs may be labeled to clarify the role that entities play in the rela-
tionship: In this case the labels are used to name direct and inverse relationships; the
labels are mandatory in the case of recursive relationships(Figure 2.3c).

The graphic notation represents also the structural properties of relationships:car-
dinality and partecipation, to model respectively how many elements of one class can
be associated with elements of another class and whether an element of one class can
have elements of another class associated to it. Multivalued relationships are repre-
sented graphically with a double arrow; optional relationships with a crossed line.

For example, a student might have passed zero or more exams, but an exam result
must be associated to a student. Figure 2.4 shows a schema fora library information
system.

!"#$
%&'("#$
)*'+,-"+$
%$.
/00'$11
%234$(5"(6&"6$1

!"#$%&$

!"#$78 1+'*(6
%&'("#$78 1+'*(6
)*'+,-"+$78 0"+$
%$.78 98:;8<8=
/00'$1178 >8%+'$$+781+'*(6;8

?3@(78 1+'*(6A
%234$(5"(6&"6$17 1$B81+'*(6

!"#$%&$

!"#$%&$

"=

C= D=

Figure 2.2 Graphic representation of classes

c
 A. Albano 2.3 ODM: An Object Data Model 11

!"#$%&"' ()*+,%'#-"'

.*'/*''%$

!"#$
012213'

4'%2' 0115'

/%2'1&'

6'71"8%29:

.*'71"8%2 .*';8<-$2%&

"%

&% '%

Figure 2.3 Graphic representation of relationships

2.3.5 Inheritance and Type Hierarchies

Inheritance is a mechanism which allows something to be de�ned, typically an
object type, by only describing how it di�ers from a previously de�ned one.
Inheritance should not be confused with subtyping: subtyping is a relation
between types such that whenT � S , then any operation which can be applied
to any value of type S can also be applied to any value of typeT . The subtype
relation (IsA) is asymmetric, re
exive and transitive.

The two notions are sometimes confused because, in object languages, inher-
itance is generally only used to de�ne object subtypes, and object subtypes can
only be de�ned by inheritance. However, we will keep the two terms distinct
and will use each of them with its proper meaning.

Inheritance can be strict , when properties of the supertype can only be
rede�ned in a controlled fashion, or non-strict , when they can be rede�ned
freely. When inheritance is strict, we assume that properties can be rede�ned
only by specializing their type and thus a value of the subtypeT1 can be used
in all contexts in which an element of the supertypeT2 is expected (context
inheritance).

In a subtype de�nition, a property of the supertype can be rede�ned (over-
riding), and its meaning in an object is then that given in the most specialized
type to which the object belongs (late binding).

A subtype can be de�ned from a single supertype (simple inheritance) or
from several supertypes (multiple inheritance).

2.3.6 Class Hierarchies

This is an asymmetric, re
exive and transitive relation in t he set of classes,
such that if (C1SubsetOfC2), then C1 is said to be asubclassof C2 and the
following properties hold:

a) The type of the elements ofC1 is a subtype of the type of the elements of
C2 (intensional constraint).

b) The elements of C1 are a subset of the elements ofC2 (extensional con-
straint).

Example 2.3 If we are interested both in Personsand Students, we have to model
two di�erent and essential facts: the type of Students elements is asubtype of the

12 CHAPTER 2 Database: The Conceptual Designer Perspective c
 A. Albano

!"#$%&' (%%)'

(%&&%*+&' ,%-.'
/-',%-.+0 1+2-&0'

3+&4'

5'+6%&

5'+06%&5'+

5'+!7'%
8-&&%*+&

3+&4
(&%-0+&

3+&4

(9:79%2&-;$9<
=+'<&9;#9%.'

>.0+?+'

!;;+-&'>. =+'<&9:+'

Figure 2.4 A schema for a library

type Personselements, because all thepossiblestudents are a subset of all thepossible
persons; the set of allactual Students, is a subset of allactual Persons(i.e. the class
Studentsis a subclassof the class Persons) (Figure 2.5).

!"#$%& '()*+,
-*)(./"($%& 0"($
1234$+5"+,6",$'%& '$7&'()*+,
89+$)8:% ;")

!"#$%&$

;30$%& *+(
<$,*'()"(*3+=$")% *+(
89+$)8:%& ;*(>;")

'()*"&($

Figure 2.5 Subclasses

A subclass can be de�ned from a single superclass (simple inheritance) or from
several superclasses (multiple inheritance). Moreover on subclasses of the same
superclass can be de�ned two kinds of constraints:overlap and covering.

A no overlap constraints specify whether two subclasses arenot allowed to
contain the same element. We denote this by drawing a small black circle
(Figure 2.7b). In the absence of this constraint, we assume by default that the
subclasses are allowed to contain same elements (Figure 2.7a).

A covering constraints specify whether the objects in the subclasses collec-
tively include all the elements in the superclass. We denotethis by drawing the
hierarchy with a double line (Figure 2.7c). In the absence ofthis constraint, we
assume by default that there is no covering constraint. Whenthe union of the
sets of the elements of the subclasses are disjoint and equalto the set of the
elements of the superclass, we call the hierarchy ageneralization (Figure 2.7d).

A re�ned library schema using subclasses is shown in Figure 2.8 with the
element attributes.

Usually there are two ways to populate subclasses:

c
 A. Albano 2.3 ODM: An Object Data Model 13

!"#$%&$

'&$(#)*(%#$

+(),"&($ -./0%1""$

Figure 2.6 Subclasses with multiple inheritance

!"#$%&$

'()*+$,#-."#$

/+)("&+$

0#"$123& 4#3()3+"$

,#-."#$

53#,#-."#$ 6#)78,#-."#$

!"#$%&''()*+,-.,#/, 01)+1"#$%&''()*+,-.,#/,

!"#$%&''()*+21"#$ 01)+1"#$%&''()*+21"#$

!"#$%&$

'()*+$ 51-*(#"&$

Figure 2.7 Kinds of subclasses

- A subclass can be populated simply by creating elements with an appro-
priate constructor, and these elements will also appear as elements of its
superclasses, because of the extensional constraint of thesubclass relation.

- A subclass can be populated also by moving objects from a superclass into
the subclass. Thus, objects can change the most speci�c class to which
they belong during their life-time. For example, a person can belong to the
subclass of students, then employees, and �nally be just a person again.

Because of the semantics of the extensional constraint of the subclass relation,
when an object is removed from a class, it is also removed fromits subclasses;
but when it is removed from a subclass, it will remain in the superclasses.

Subtype, inheritance, and subset are three di�erent kinds of relations be-
tween types and values of an object language.Subtype is a relation between
types which implies value substitutability; inheritance is a relation between
de�nitions, which means that the inheriting de�nition is sp eci�ed \by di�er-
ence" with respect to the super-de�nition; subsetis a subset relation between
collections of objects, which also implies a subtype relation between the types
of their elements. Languages exist that support only subtypes, or subtypes
and inheritance, or subtypes, inheritance and subsets.

Several alternative graphical notations have proposed formodeling databases.
The most popular is the entity-relationship (ER) diagram, i ntroduced by Chen

14 CHAPTER 2 Database: The Conceptual Designer Perspective c
 A. Albano

!"#$% &'()*+
,)'-.% &'()*+
/01-)&2.(% &'()*+
3.4(%)*'

!"#$"%&'()*"+
,-.+'")/"%0.

/5&)')5*% &'()*+
6578$091.(%)*'

!%%1.
$49.% &'()*+
$4')5*4-)'8% &'()*+
#)('2:4'.% ;4'.

23/*%'.

$49.% &'()*+
<;;(.&&% &'()*+
/25*.&% &.=>&'()*+

!%''%4-'.

:4'.% ;4'.
:0.:4'.% ;4'.

5%(0.

65;.% &'()*+
6/37-0/.

?@AB./25*.% &'()*+
8(+3$/9

:(.5%(0-7 ;-&('7.

<.-8%'

<.-78%'<.-

<.-2$.%
=(''%4-'

>-'?
!'%(7-'

>-'?

2))-('.@0

,-.+'"#-.

C*')-%>>>;4'.

6*%'/>-'?
5%(0!%%1.

,.(9% &'()*+
>-'?.

@07-A-.

Figure 2.8 A re�ned schema for a library with element attributes

in the 1976 and later extended with hierarchies. More recently the Uni�ed
Modeling Language (UML) is becoming the standard notation for object mod-
eling. Several tools also exists to specify diagrams, examples are:ERwin from
Computer Associates,ER/Studio from Embarcadero Technologies, andRe-
lational Rose from Rational Software for UML. In addition, DBMS vendors
provide their own design tools, such asOracle Designer and Power Designer
from Sybase. Just to give an idea of the alternative graphical notations, the
library schema in Figure 2.4 is shown in Figure 2.9 using the ER notation.

2.4 Exercises

1. A university database contains information about professors (identi�ed by social
security number, or SSN) and courses (identi�ed by courseid). Professors teach
courses; each of the situations described below concerns the Teaches relationship
set. For each of the following situations, draw a diagrams that capture this (as-
suming that no further constraints hold):

(a) Professors can teach the same course in several semesters, and each o�ering
must be recorded.

(b) Professors can teach the same course in several semesters, and only the most
recent such o�ering needs to be recorded. (Assume that this is the case in all
subsequent questions.)

(c) Every professor must teach some course.
(d) Every professor teaches exactly one course (no more, no less).
(e) Every professor teaches exactly one course (no more, no less), and every course

must be taught by some professor.
(f) Now suppose that certain courses can be taught by a team ofprofessors jointly,

but it is possible that no one professor in a team can teach thecourse. Model
this, introducing additional entity sets and relationship sets if necessary.

c
 A. Albano 2.4 Exercises 15

�

"#$%
&'()'*+#,-.'/
0"%/#'-1'*2%

3%"4)%*

5,##*6"#
!"#$

&#*,7"#
!"#$

89:;< 89:2< =27">"%
8;:2< 8;:2<

4?1.*#%

3%"@*#

3%"7@*#3%"

89:;< 89:2<

4--",#%=2
8;:;<8;:2<

&*##*6"#%
89:2<

A*,2%
8;:;<

B,%A*,2"7

&**C%

0"%/#'("%

D"+,#7%

89:;<

8;:;<

8;:2< 89:2<

Figure 2.9 The library schema in ER

2. Let us assume that a company uses the following worksheet to store data about
its computers.

InvNo Model Description SerialNo Cost UCode UName UPhone
. .
111 SUN3 WS Sun ajk078 25000 1 John 576
112 PBG4 Notebook Mac a908m 6000 2 Ron 587
113 SUN3 WS Sun ajp890 27000 2 Ron 587
114 ThinkPad IBM PC ajp890 7000 3 Bob 588
. .

The inventory number identi�es a computer. A computer has a cost, a model,
a description and a serial number. Computers with the same model can have a
di�erent cost, but have the same description. The serial number is di�erent for the
computers with the same model. Each computer has a user, who can have several
computers, but only one phone number. A user has a code and a name. Design a
conceptual schema for the database.

3. A bank database keeps track of loans, clients and montly payments to produce
reports of the kind shown in the Figure 2.10. A client may apply for several loans
and can have more than one approved loan. Design a conceptualschema for the
database.

LOAN REPORT

DATA: 7/2/02

CLIENT CODE: 2000
CLIENT NAME: Mario Rossi
CLIENT ADDRESS: Via Roma, 13 -Pisa

LOAN NUMBER: 250
LOAN DATA OF EXPIRY : 1/1/10
LOAN AMOUNT : 70.000,00
ANNUAL INTEREST RATE: 5%
No. OF PAYMENT MADE : 4
CURRENT BALANCE : 14.000

PAYMENT No PAYMENT DATA OF EXPIRY AMOUNT PAYMENT DATA

 1 1/7/00 3.500 29/06/00
 2 1/1/01 3.500 30/12/00
 3 1/7/01 3.500 30/06/01
 4 1/1/02 3.500 30/12/01

Figure 2.10 Loan report

4. Design a conceptual schema for a database to keep track of actors and directors of
�lms. Each actor o director has a unique name, a birth year, and a nationality. An

16 CHAPTER 2 Database: The Conceptual Designer Perspective c
 A. Albano

actor may be also a director. Each �lm has a title, the production year, the actors,
a director, and a producer. Films produced the same year havedi�erent titles.

5. We would like to design a database to maintain the following facts. Trains are
either local trains or express trains, but never both. A train has a unique number
and an engineer. Stations are either express stops or local stops, but never both.
A station has a name (assumed unique) and an address. All local trains stop at
all stations. Express trains stop only at express stations.For each train and each
station the train stops at, there is a time. Design a conceptual schema for the
database.

6. Consider the following information about a manufacturing company's parts and
suppliers database. The database contains information about the way certain parts
are manufactured out of other parts: the subparts that are involved in the manufac-
ture of a part, the number of subparts used, the cost of manufacturing a part from
its subparts, the mass of the part as result of the subparts assemblage. The man-
ufactured parts may themselves be subparts in a further manufacturing process.
In addition, certain information must be held on the parts th emselves: their code,
name and, if they are imported (i.e., manufactured externally), the supplier and
the purchase cost. Suppliers have a code, a name, several phones and an address.
Design a conceptual schema for the database.

7. Design a conceptual schema for a Company database to keep track of a company's
employees, departments, and projects. The company is organized into departments.
Each department has a unique name, a unique number, a location, and a manager
who is one of its employees. We keep track of the start date when the employee
began managing the department. A department controls a number of projects,
each of which has a unique name, a unique number. An employee has a name, a
social security number, address, salary, sex (m or f), and birthdate. An employee
is assigned to one department but may work on several projects, which are not
necessarily controlled by the same department. We keep track of the percent-time
that an employee works on each project. We also keep track of the direct supervisor
of each employee, who belong to the same department, and the start date when
the employee began acting as supervisor. We want to keep track of the dependents
of each employee for insurance purposes. We keep each dependent's name, sex,
birthdate, and relationship (spouse or child or other) to the employee (assume
that only one parent works for the company). We are not interested in information
about dependents once the parent leaves the company.

Chapter 3

DATABASE: THE RELATIONAL
DESIGNER PERSPECTIVE

3.1 The Relational Data Model

The relational data model, de�ned by Codd in 1970, has been supported by
DBMSs from the mid-1970s on. Such systems soon became popular, mainly
because of the simplicity of the data model and the facilities they provide to
allow easy access to the data for non-expert users. Several implementations
exist and are available on many types of personal computers,and workstations
(e.g., ORACLE, DB2, SQL Server, Sybase).

The relational data model supports a very simple, tabular view of the data,
with a direct correspondence to the mathematical concept ofa relation. Fol-
lowing the proposal of the relational data model, an important theory has
been developed to assist in the design of relational databases; this theory will
be presented in the next section.

The relational data model describe databases in terms of sets of tuples
(records) and associations among data in terms of values of attributes, and
not using a speci�c abstraction mechanism. This way of describing associa-
tions looks similar to the solution adopted in object data models, but there
are important di�erences in the modeling capabilities of these two data models:

- In the object data model the structure of the objects can be complex,
whereas in the relational data model the structure of a tuple is simple,
i.e. the values of the components of a tuple are elementary.

- In the object data model the associations model set of object tuples, whereas
in the relational data model associations are described by attributes which
can only have the value of the key of the associated elements of some other
relation as their values.

- In the object data model the structure of an object is de�ned together with
the representation of the procedural knowledge, whereas inthe relational
data model only a mechanism to describe the structure of the tuples is
provided.

A number of studies which aim at overcoming some of the limitations of the
relational data model are now in course, and references to them are given in
the bibliographic notes.

18 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

De�nition 3.1.1 A relational database is described by a set of relation schemas
R : f Tg de�ned as follows:

- integers,
oats, booleans, and strings are primitive types.
- If T1; : : : ; Tn are primitive types, and A1; : : : ; An are distinct attribute names,

then (A1 : T1; : : : ; An : Tn) is a tuple type of degreen. Two tuple types are
equal if they have the same set of pairs (A i : Ti).

- If T is a tuple type, then f Tg is a relation type;
- A relation schema R : f Tg is a variable R with a relation type.

De�nition 3.1.2 A tuple (A1 := V1; : : : ; An := Vn) of type T = (A1 : T1; : : : ; An :
Tn) is a set of pairs (A i ; Vi) with Vi of type Ti . Two tuples with the same type
are equal if they have the same set of pairs (A i ; Vi). The extension of an re-
lation schema R : f Tg is a �nite set of tuples of type f Tg, called a relation.
The cardinality of a relation is the number of its tuples. The extension of a
relational database is a collection of the extensions of itsrelation schemas.

De�nition 3.1.3 A key for a relation is a minimal subset of attributes whose
values identify a tuple. Out of all the possible keys the database designer
identify a primary key.

An example of a relational database schema is:

Students:f Name: string, StudentCode: string, City : string, BirthYear : int g
ExamResults:f Subject: string, Candidate: string, Date: string, Grade: int g

where the attribute StudentCodeis the primary key for the relation Students, and
the attribute Candidate in ExamResults, whose values match those of the primary
key of the Students relation, is called an external key. An external key is used
to model associations.

For simplicity in the following, instead of the notation R : f A1 : T1; : : : ; An :
Tng, we will use as standard notation R(A1 : T1; : : : ; An : Tn) to denote a
relation with name R and type f A1 : T1; : : : ; An : Tng, which will be further
abbreviated to R(A1; : : : ; An) when the type of the attributes is not important.

Example 3.1 A relational database schema for the example in Figure 3.1 isthe
following (primary keys are underlined):

!"#$% &'()*+
,)'-.% &'()*+
/01-)&2.(% &'()*+
3.4(%)*'

!"#$"%&'()*"+
,-.+'")/"%0.

/5&)')5*% &'()*+
6578$091.(%)*'

!%%1.
$49.% &'()*+
$4')5*4-)'8% &'()*+
#)('2:4'.% ;4'.

23/*%'.
2))-('.40

,-.+'"#-.

Figure 3.1 A database schema using the ODM

Authors(Name, BirthDate, Nationality)
BibliographicDescriptions(ISBN, Title, Publisher, Year)
Books(ISBN, Position, CopyNumber)
Authors-BibliographicDescriptions(Name, ISBN)

c
 A. Albano 3.2 Relational Algebra 19

Figure 3.2 shows a graphical notation for representing relational schemas: A
rectangle represent a relation schema and directed arrows from R to S repre-
sent an association between them with a foreign key de�ned inR for S.

!"#$%&"' ()*+,%'#-"'

.*'/*''%$

!"#$%&"' ()*+,%'#-"'
0*&1*"%

!"#$%&"'($%)*+",-&.*
//0122**

345%)* +",-&.
'-"6)* +",-&.
7-,"89%4,)* -&"

!"#$%&"' '4&$-$4"%)* +",-&.*
//0122
//:1;!"#$%&"+<22**

!#=>%?")* +",-&.
//0122

@4"%)* +",-&.
A,4$%)* -&"

()*+,%'#-"'

0*&1*"%

!"#$%&'()*

+(,*-./0*,$%&'()*

+(,*-./0*,$%&'()*$1.-'$*--2.34-(%

Figure 3.2 A graphical notation for a relational schema

3.2 Relational Algebra

The relational data model supports operations on relationswhose results are
themselves relations. These operations can be combined using an algebraic
notation called relational algebra. Let R, S, and E be a relational expression
de�ned using relations in the database or constant relations.1 There are six
fundamental operations in relational algebra:rename, project, select, set union,
set di�erence, and product; we shall also mention some additional operations
which serve as useful shorthand.

3.2.1 Fundamental Operations

Rename: � A 1 ! B 1 ;A 2 ! B 2 ;:::;A m ! B m (R)

A1; A2; : : : ; Am are attributes of R, and B1; B2; : : : ; Bm are not attributes of
R. The result is the relation R with the attributes A i renamed to B i .

Project: � A 1 ;A 2 ;:::;A m (R)

A1; A2; : : : ; Am are attributes of R. The result is a relation with type f A1 :
T1; A2 : T2; : : : ; Am : Tm g whose tuples are those ofR with only the attributes
A1; A2; : : : ; Am . Since the result is a set, any duplicate tuples are eliminated.

Select: � Condition (R)

1. A constant relation is written by listing its tuples withi n f g , for example f (A1 := 2 ; A 2 :=
125); (A1 := 3 ; A 2 := 250) g.

20 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

The result is a relation with the same type asR, whose tuples are those ofR
which satisfy the condition.

Set union: R [S

R and S are relations of the same type, and the result is a relation with tuples
which are in R or S or both.

Set di�erence: R � S

R and S are relations of the same type, and the result is a relation with tuples
which are in R but not in S.

Product: R � S

Rf A1 : T1; : : : ; An : Tng and Sf An+1 : Tn+1 ; : : : ; An+ m : Tn+ m g are relations
with disjoint set of attributes. The result is a relation of t ype f A1 : T1; : : : ; An :
Tn ; An+1 : Tn+1 ; : : : ; An+ m : Tn+ mg whose tuples are all possible tuples whose
�rst n components form a tuple in R and whose lastm components form a
tuple in S.

Let us show how these operators can be used to write queries using the
following database:

Students

Name StudentCode City BirthYear

Isaia 071523 Pisa 1962
Rossi 067459 Lucca 1960
Bianchi 079856 Livorno 1961
Bonini 075649 Pisa 1962

ExamResults

Subject Candidate Date Grade

DA 071523 12/01/85 28
DA 067459 15/09/84 30
MTI 079856 25/10/84 30
DA 075649 27/06/84 25
LFC 071523 10/10/83 18

Example 3.2 First, we �nd the name, and the student code of all the students of
Pisa.

� Name;StudentCode (� City = 'Pisa' (Students))

Name StudentCode

Isaia 071523
Bonini 075649

Next, suppose we want to �nd the names of all those students, who have passed the
exam \DA" with grade 30, plus the examination date. Let us compute the result in
more than one step, using the following strategy: since we need information from both
the Students relation and the ExamResultsrelations, let us �rst compute the product
of the two relations, producing the following temporary relation T:

T := Students � ExamResults

which can be very large: if there aren tuples in Studentsand m tuples in ExamResults,
then there are n � m tuples in T .

c
 A. Albano 3.2 Relational Algebra 21

Name StudentCode City BirthYear Subject Candidate Date Gra de

Isaia 071523 Pisa 1962 DA 071523 12/01/85 28
Isaia 071523 Pisa 1962 DA 067459 15/09/84 30
Isaia 071523 Pisa 1962 MTI 079856 25/10/84 30
Isaia 071523 Pisa 1962 DA 075649 27/06/84 25
Isaia 071523 Pisa 1962 LFC 071523 10/10/83 18
Rossi 067459 Lucca 1960 DA 071523 12/01/85 28
Rossi 067459 Lucca 1960 DA 067459 15/09/84 30
Rossi 067459 Lucca 1960 MTI 079856 25/10/84 30
Rossi 067459 Lucca 1960 DA 075649 27/06/84 25
Rossi 067459 Lucca 1960 LFC 071523 10/10/83 18
Bianchi 079856 Livorno 1961 DA 071523 12/01/85 28
Bianchi 079856 Livorno 1961 DA 067459 15/09/84 30
Bianchi 079856 Livorno 1961 MTI 079856 25/10/84 30
Bianchi 079856 Livorno 1961 DA 075649 27/06/84 25
Bianchi 079856 Livorno 1961 LFC 071523 10/10/83 18
Bonini 075649 Pisa 1962 DA 071523 12/01/85 28
Bonini 075649 Pisa 1962 DA 067459 15/09/84 30
Bonini 075649 Pisa 1962 MTI 079856 25/10/84 30
Bonini 075649 Pisa 1962 DA 075649 27/06/84 25
Bonini 075649 Pisa 1962 LFC 071523 10/10/83 18

However the only meaningful tuples inT are those with equal values for the attributes
StudentCodeand Candidate.

R := � StudentCode = Candidate (T)

Name StudentCode City BirthYear Subject Candidate Date Gra de

Isaia 071523 Pisa 1962 DA 071523 12/01/85 28
Isaia 071523 Pisa 1962 LFC 071523 10/10/83 18
Rossi 067459 Lucca 1960 DA 067459 15/09/84 30
Bianchi 079856 Livorno 1961 MTI 079856 25/10/84 30
Bonini 075649 Pisa 1962 DA 075649 27/06/84 25

The �nal answer to our query is the result of the expression:

� Name;Date (� Subject = 'DA' ^ Grade = 30 (R))

The same result might have been obtained with the expression

� Name;Date (� Subject = 'DA' ^ Grade = 30 ^ StudentCode = Candidate (Students� ExamResults))

As matter of fact, the result of the above expression can be computed in a
more e�cient way than that shown above. This is a property of a relational
manipulation language: a complex expression is a way of specifying the result
declaratively, without forcing the system to follow certain steps, as happens in
the �rst case shown above. The system chooses the best strategy by estimating
the cost of obtaining the query answer according to di�erent alternatives. We
will discuss this aspect in more detail later on.

3.2.2 Additional Operations

Examples of additional and very useful operators that can beexpressed in
terms of the �ve basic operators above areintersect, join , and natural join .

Set intersection: R \ S

22 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

R and S are relations of the same type, and the result is a relation with tuples
which are both in R and in S.

Join: R ./
R:A i = S:A j

S

Rf A1 : T1; : : : ; An : Tng and Sf An+1 : Tn+1 ; : : : ; An+ m : Tn+ m g are relations
with a disjoint set of attributes, A i an attribute of R and A j an attribute of
S. The join R ./

R:A i = S:A j
S is equivalent to � A i = A j (R � S).

Natural Join: (R ./ S)

The natural join is only applicable when both R and S have attributes with the
same name. Let us assume thatR and S have the common attribute A i . The
result is computed by selecting those tuples ofR � S that have the same value
for the common attribute A i , and excluding one of the common attributes
from the result.

The following operators are examples of useful extended relational algebra
operations.

Generalized projection: � e1 AS ide1 ; e2 AS ide2 ;:::; en AS iden (E)

whereE is any relational algebra expression, each ofe1; : : : ; en is an arithmetic
expression involving constants and attributes in the schema of E , and ide1 , . . . ,
iden is a set of di�erent attributes.

For example, if A1; A2; : : : ; Am are integer attributes in R, we can write the
following expression:

� A 1 ; 2 AS Two; A 1+ A 3 AS A1PlusA3(R)

The expressions in the generalized projection can be de�nedusing aggregate
functions, which take a collection of values and return a single value as result.
Common aggregate functions includemin, max, count, sum, and avg. If a
generalized projection contains an aggregate function, then all the expressions
must be aggregate functions, and the result is a relation with a single tuple
with attributes values the results of the aggregation functions.

Bag-project: � b
A 1 ;A 2 ;:::;A m

(R)

the result is the projection of R onto the attributes A1; A2; : : : ; Am , without
duplicates elimination, as it happens with the project operator.

Grouping operator: A 1 ;:::;A n
 f 1 (B 1);:::;f m (B m) (E),

where E is any relational algebra expression;A1; : : : ; An is a list of attributes
of E on which to group; eachf i is an aggregate function applied to attributes
of E . The meaning of the operation is as follows (Figure 3.3):

1. The tuples of E are partitioned in groups in such a way that all the tuples
in a group have the same values forA1; : : : ; An .

2. For each group with attributes values a1; : : : ; an , the result has a tuple

(a1; : : : ; an ; v1; : : : ; vm)

where for eachi , vi is the result of applying the aggregation function f i on
the multiset of B i values in the group.

c
 A. Albano 3.2 Relational Algebra 23

! ! ! " ! " " # # # " !! "
! ! " ! " " # # # !! !

! ! "! " "###"!! ! ###! " "

!!! ! " ! #"" #!!!" ! ! " "

!"#$%&

! !

!

Figure 3.3 Grouping evaluation

For example, to �nd for each value of A1 the maximum value of A2, and the
sum of the A3 values, we write the expression:

A 1
 max(A2);sum(A3)(E)

As in the generalized projection, attributes of a grouping operation can be
renamed as follows:

A 1
 max(A2) AS M; sum(A3) AS S (E)

Sort: � A 1 ;A 2 ;:::;A m (R)

whereA1; A2; : : : ; Am are attributes of R. The operator returns the tuples of R
sorted in ascending order on the attributesA1; A2; : : : ; Am . To sort in descend-
ing order the attributes becomes pairsA i d, where d stands for \descending".

3.2.3 Equivalence rules

Two relational algebra expressions are said to beequivalent if, on every legal
database instance, the two expressions generate the same set of tuples. Note
that the order of the tuples is irrelevant.

An equivalence rulesays that expressions of two forms are equivalent. A
query optimizer uses equivalence rules to transform expressions into other
logically equivalent expressions. We now present some of them.

1. Cascade of select

� � X (� � Y (E)) = � � X ^ � Y (E),
2. Select and project are commutative

� Y (� � X (E)) = � � X (� Y (E)) ; if X � Y .

If X 6� Y , then:

� Y (� � X (E)) = � Y (� � X (� XY (E))).

24 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

3. Select distributes over product and join

� � X (E1 � E2) = � � X (E1) � E2,
� � X (E1 ./ E 2) = � � X (E1) ./ E 2,

if X are attributes from E1.

� � X ^ � Y (E1 � E2) = � � X (E1) � � � Y (E2),
� � X ^ � Y (E1 ./ E 2) = � � X (E1) ./ � � Y (E2),

if X are attributes from E1 and Y are attributes from E2.

� � X ^ � Y ^ � J (E1 � E2) = � � X (E1) ./
� J

� � Y (E2),

if X are attributes of E1, Y are attributes of E2 and � J is a join condition.
4. Cascade of project

� Z (� Y (E)) = � Z (E),

where Z and Y are attributes from E, and Z � Y .
5. Project distributes over product and join

� XY (E1 � E2) = � X (E1) � � Y (E2),
� XY (E1

./
� J

E2) = � X (E1) ./
� J

� Y (E2),

where X are attributes from E1, Y are attributes from E2, and � J is the
join condition with attributes J � XY .

� XY (E1
./
� J

E2) = � XY ((� XX E 1
(E1)) ./

� J
(� Y X E 2

(E2))),

whereX are attributes from E1, Y are attributes from E2, X E1 are the join
attributes from E1 which are not in XY , and X E2 are the join attributes
from E2 which are not in XY .

6. Product and join are commutative

E1 � E2 = E2 � E1
E1

./
� J

E2 = E2
./
� J

E1

7. Product and join are associative

(E1 ./ E 2) ./ E 3 = E1 ./ (E2 ./ E 3),
(E1

./
� J 1

E2) ./
� J 2 ^ � J 3

E3 = E1
./

� J 1 ^ � J 3
(E2

./
� J 2

E3),

where � J2 contains only attributes of E2 and E3. If the join condition is
empty, it follows that � is associative.

8. Set union and intersection are commutative

E1 [E2 = E2 [E1
E1 \ E2 = E2 \ E1
E1 � E2 6= E2 � E1

9. Set union and intersection are associative

(E1 [E2) [E3 = E1 [(E2 [E3)
(E1 \ E2) \ E3 = E1 \ (E2 \ E3)

10. Select distributes over set operations

� � X (E1 � E2) = � � X (E1) � � � X (E2)

the equivalence holds with� replaced by [or \ , while

� � X (E1 � E2) = � � X (E1) � E2

holds with replaced � by [, but does not hold if � is replaced by\ .

c
 A. Albano 3.3 Relational Database Design: ODM-to-Relational Mapping 25

11. Project distributes over set operations

� X (E1 [E2) = (� X (E1)) [(� X (E2))
12. Select distributes over grouping

� X (A
 F (E)) = A
 F (� X (E))

if X uses only attributes from A.

We now illustrate the use of the equivalence rules. The expression

� Name(� � (Students� ExamResults)),

where � = (StudentCode= Candidate ^ City = 0Pisa0 ^ Grade = 30), can be repre-
sented as the initial expression tree (query tree) in Figure 3.4, and then it can
can be represented also with the transformed query tree, taking into account
the previous equivalence rules.

Initial query tree Tree after transformations

� Name � Name

� City = 0Pisa0 ^ Grade = 25 ^ StudentCode = Candidate ./
StudentCode = Candidate

� � Name, StudentCode � Candidate

� City = 0Pisa0 � Grade = 25Students ExamResults

Students ExamResults

Figure 3.4 Expression trees

3.3 Relational Database Design: ODM-to-Relational Map-
ping

The growing use of DBMSs, the complexity of the new applications, and
the need to implement database applications that can be readily adapted to
changes in user requirements, have all led to an increasing demand for envi-
ronments with integrated sets of automated tools to supportboth the design
and the maintenance of database applications. The problem is similar to that
of software engineering and the following strategies have been adopted: a) the
de�nition of a design methodology composed of a set of structured steps in
which design decisions are considered one at a time to achieve a satisfactory
result; b) the de�nition of techniques to be used during the design steps; c)
the de�nition of tools for an automated development support system.

The aim of a design methodology is to transform a user-oriented linguis-
tic representation of the information needs of an organization into a DBMS-
oriented description. There is a general consensus among researchers and prac-
titioners on the static and dynamic aspects that should be modeled during
the design process. Static aspects regard the data structures and integrity

26 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

constraints, while dynamic aspects concern the transactions modifying the
database from one consistent state to another. We shall consider here only the
static aspects.

Di�erent phases of design have been suggested to cope with the complexity
of the database design process.User requirements analysis and speci�cation
consists of collecting user needs and normalizing them according to established
standards.Conceptual designis the phase in which requirements are formalized
and integrated into a global conceptual schema, using a DBMS-independent
conceptual language. In the next phase,logical design, the conceptual schema
is mapped into a logical schema using the data model supported by the DBMS
chosen for the implementation. Finally, physical designconcerns the selection
of the data structures used to store and retrieve the data.

When a relational DBMS is used, in the logical design phase the designer
can bene�t from a well-developed theory, callednormalization theory, which
provides algorithms to produce a set of relation schemas with certain desirable
properties, and in particular to avoid certain \bad" design decisions, both with
respect to semantics and to performance.

In this section the steps of an algorithm are described to design a relational
schema from a conceptual design. For simplicity only structural aspects are
considered:

STEP 1: Representation of 1:N and 1:1 associations with the rules inFig-
ure 3.5.

�

�

!""#$%&"'(
�

!""#$%&"'(
)***++,-./011

" !

!

!""#$%&"'(
)***++,-./011
)*!""#$%&"'(

"
!

!"#$%&&'()%*)'+& ,-.%*)'+%.$/-0/-&-+*%*)'+$'1$!"#$%&&'()%*)'+&

!""#$%&"'(
"

!""#$%&"'(
#

!

!""#$%&"'(
"

!""#$%&"'(
#

!""#$%&"'(
"

!""#$%&"'(
"

!""#$%&"'(
#

!""#$%&"'(
#

!""#$%&"'(
)***++,-./011

" !
!""#$%&"'(

#

!""#$%&"'(
)***++,-./011

"

!""#$%&"'(
#

Figure 3.5 Rules for STEP 1

STEP 2: Representation of N:M associations with the rules in Figure3.6.
STEP 3: Representation of class hierarchies with the rules in Figure 3.7. For

simplicity we assume that the subclasses are disjoint and that the class
attributes are not rede�ned in subclasses. Three main options are possible:

1. A single relation with the attributes of the class and subclasses, and a

c
 A. Albano 3.4 Relational Database Design: Normalization Theory 27

�

!""#$%&"'(
"

!""#$%&"'(
!)**+,--)**.,/!0--

1)**+,--)**.,/10--

!" #

!""#$%&"'(
"

!""#$%&"'(
#

!""#$%&"'(
!

!

!""#$%&"'(
"

!""#$%&"'(
!)**+,--)**.,/!0--

1)**+,--)**.,/10--
2)!""#$%&"'(

!" #

!""#$%&"'(
"

!""#$%&"'(
#

!
!""#$%&"'(

"
!""#$%&"'(

"
!3)**+,--)**.,3/!0--
!4)**+,--)**.,4/!0--

!"$ "%

!"#$%&&'()%*)'+& ,-.%*)'+%.$/-0/-&-+*%*)'+$'1$!"#$%&&'()%*)'+&

Figure 3.6 Rules for STEP 2

special attribute D to discriminate to which subclass a tuple belong,
if any.

2. A relation for the class and a relation for each subclass (vertical par-
titioning). The relation for the class contains the class elements and
the elements of the subclasses.

3. A relation for the class and a relation for each subclass which include
the class attributes too (horizontal partitioning). The relation for the
class contains the class elements which do not belong to the subclasses.

STEP 4: De�ne the primary key for each relation representing a classof the
conceptual schema. For each relation representing a subclass, the primary
key is that selected for the superclass.

STEP 5: Representation of multi-valued attributes: if a class C has a multi-
valued attribute A, de�ne a new relation with attributes corresponding to
A, plus the primary key for C as a foreign key.

STEP 6: Representation of composite attributes: if an attribute A is a record
with �elds A i , A is replaced by theA i .

The applications of the above steps to the schema in Figure 2.8 produces the
relational schema in Figure 3.8.

3.3.1 Exercises

1. Convert the following conceptual schemas to a relationaldatabase schema.

(a) Your solution to Exercise 2.4(3).
(b) Your solution to Exercise 2.4(5).
(c) Your solution to Exercise 2.4(6).

3.4 Relational Database Design: Normalization Theory

In this section, we shall show how normalization theory can be applied directly
following an approach to relational database design which is based on analyzing

28 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

!"##$$%!&&
'"
(###$$)!*+++,&&

�

"#

'-
.##$$)!*+++,&&

$ %
'/

&'

!"#$%&'()*%%+%

!"##$$%!&&
'"
'/
'-
(###$$)!*+++,&&
.##$$)!*+++,&&
012345637389:;

!
"#

%'

,-./)+$0+)*1-2.$0+30+%+.1*1-2.$
24$!"#$%&'()*%%+%

%

!"##$$%!&&
'"
(###$$)!*+++,&&

!
"#

!"#$$%!&&#$$)!*",&&
'/

&
' !"#$$%!&&#$$)!*",&&

'-
.##$$)!*+++,&&

$

5+)*1-2.*)$0+30+%+.1*1-2.$24$!"#$%&'()*%%+%
'6$7+01-(*)$3*01-1-2.-./

!"##$$%!&&
'"
(###$$)!*+++,&&

!
" #*<,

!"#$$%!&&
'"
'/
(###$$)!*+++,&&

&'

#

!"#$$%!&&#
'"
'-
(###$$)!*+++,&&
.##$$)!*+++,&&

$

%

#

5+)*1-2.*)$0+30+%+.1*1-2.$24$!"#$%&'()*%%+%
'6$820-92.1*)$3*01-1-2.-./

(! (!

Figure 3.7 Rules for STEP 3

an application in terms of its elementary facts and the functional relationships
among them, and then synthesizing a \good" set of relation schemas.

To show in which sense a relation schema can be considered \bad", let us
assume that we are interested in representing certain information in a simpli-
�ed library administration system, and we have decided to represent it in one
relation with the following schema:

Library (UserName, Address, Tel, CallNumber, Author, Titl e, Date)

The library has a set of books (not more than one copy per book), each
identi�ed by a unique book number. Books may be loaned to borrowers, each
identi�ed by a unique name, and having an address and telephone number; a
library user can have more than one book on loan at the same time; the lending
date is also recorded. The key of the relation isf UserName, CallNumberg. An
example of an instance of the relation is:

c
 A. Albano 3.4 Relational Database Design: Normalization Theory 29

!"#$%&' (%%)'

(%&&%*+&' ,%-.'

� +&0'

1'+

(&%-2+&
/+&0

(3453%6&-7$38
9+'8&37#3%.'

:.2+;+'

!77+-&':.

<#"2+.#' =-8"5#>
<$%&#/+&0
,%-.(%%)'

Figure 3.8 A relational schema for a library

Name StudentCode

Isaia 071523
Bonini 075649

UserName Address Tel CallNumber Author Title Date

Rossi Carlo Carrara 75444 XY188A Boccaccio Decameron 07-07
Paolicchi Luca Avenza 59729 XY256B Verga Novelle 07-08
Pastine Maurizio Dogana 661338 XY090C Petrarca Canzoniere01-08
Paolicchi Laura Avenza 59729 XY101A Dante Vita Nova 05-08
Paolicchi Luca Avenza 59729 XY701B Manzoni Adelchi 14-01
Paolicchi Luca Avenza 59729 XY008C Moravia La noia 17-08

The above schema is \bad" because it presents the following main undesirable
properties:

- Repetition of information . Every time a user borrows another book, the
information about his address and telephone will be repeated; this wastes
space and complicates database updating when a user changesaddress.

- Inability to represent certain information . Information about users can be
stored only when they borrow a book.

An alternative design is to replace the schema with two relation schemas, but
a careless decomposition may lead to another kind of \bad" design. Consider
the following rather absurd decomposition where the association between loans
and borrowers is modeled by the telephone numbers:

Users(UserName, Address, Tel)
Loans(CallNumber, Author, Title, Date, Tel)

The instances of the two relations are obtained by projections of the Library
relation as follows:

Users = � UserName, Address, Tel (Library) =

30 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

UserName Address Tel

Rossi Carlo Carrara 75444
Paolicchi Luca Avenza 59729
Pastine Maurizio Dogana 661338
Paolicchi Laura Avenza 59729

Loans = � CallNumber, Author, Title, Date, Tel (Library) =

CallNumber Author Title Date Tel

XY188A Boccaccio Decameron 07-07 75444
XY256B Verga Novelle 07-07 59729
XY090C Petrarca Canzoniere 01-08 661338
XY101A Dante Vita Nova 05-08 59729
XY701B Manzoni Adelchi 14-01 59729
XY008C Moravia La Noia 17-08 59729

This decomposition eliminates data duplications, but presents another anomaly
when we need to reconstruct theLibrary relation. For example, suppose that
we wish to send a letter to solicit users to return books borrowed in January.
To obtain the required information, the following query can be formulated:

� UserName, Address(Users ./ � Data 2 (01 � 01;31� 01) (Loans))

The result is

UserName Address

Paolicchi Luca Avenza
Paolicchi Laura Avenza

which is wrong since Laura Paolicchi has not borrowed a book in January.
Thus, when we join Users and Loans we have more tuples in the result than
those we expect. This anomaly is called aloss of information and the decom-
position is called a lossy decomposition. The reason for this anomaly is that
we have selected a wrong external key to describe the association of users and
loans. A correct design would have been

Users(UserName, Address, Tel)
Loans(CallNumber, Author, Title, Date, UserName)

The main goal of relational design theory is to give formal criteria to design
databases without anomalies of the types represented by theabove examples.

In the following, we will assume that attributes have a global meaning, i.e.
attributes mean the same wherever they occur in a database schema, and we
adopt the following conventions:

- Capital letters near the beginning of the alphabet stand for single attributes
(A; B; A 1; A2, etc.).

- Capital letters near the end of the alphabet stand for sets of attributes
(X; Y; U; Z , etc.).

- XY is used as a shorthand forX [Y , AB as a shorthand for f A; B g, and
AX as a shorthand forf Ag [X .

- A1A2 : : : An is a shorthand for f A1; A2; : : : ; Ang.
- Names beginning with a capital letter denote relation schemas, andR(T) a

relation with a set of attributes T.
- Let t be a tuple, R(T) a relation schema, andX � T, then t[X] denotes the

X -value of t.

c
 A. Albano 3.4 Relational Database Design: Normalization Theory 31

3.4.1 Functional Dependencies

In order to formalize the notion of schema without anomalies, we need a formal
description of the semantics of the facts stored in a relation. Codd [?] proposed
a particular kind of formalism based on the notion of functional dependency:

De�nition 3.4.1 Given a relation schemaR(T) and X; Y � T, a functional
dependency (FD) is a constraint onR of the form X ! Y , i.e. X functionally
determinesY or Y is determined by X , if for any legal instancer of R a value
of X uniquely determines a value ofY

8t1; t2 2 r such that t1[X] = t2[X] it is also the case that t1[Y] = t2[Y]:
(3.1)

We say that an instancer of R satis�es the FD X ! Y if condition (3.1) holds,
and that an instance r of R satis�es a set F of FD if, for each X ! Y 2 F ,
condition (3.1) holds.

Condition (3.1) formally expresses the following constraint: in any legal in-
stance r of R, if two tuples have the sameX value, then they will also have
the sameY value. These kinds of constraints depend on the semantics ofthe
represented facts and consequently must be true for any legal instance r of R;
we cannot look at a particular instance of R and deduce what functional de-
pendencies hold forR. Functional dependencies might be enforced by a DBMS
if this is speci�ed by the database designer, but relationalsystems usually en-
force only those functional dependencies that follow from the fact that a key
determines the other attributes of a relation. Since functional dependencies
are an important aspect in database design, in the followingwe will use the
convention that R < T; F > denotes a schema with a setT of attributes and
a set F of functional dependencies overT.

Let us consider a legal instancer of R < T; F > , with F = f X ! Y; X !
Z g; X; Y; Z � T, and W � X . Many other functional dependencies are sat-
is�ed by r including, for example, X ! W and X ! Y Z. In fact, in the
�rst case, if two tuples have the same value onX , they will certainly have
the same value onW which is a subset ofX (trivial FD); in the second case
if t1[X] = t2[X], since t1; t2 satisfy the FDs in F , it is also the case that
t1[Y] = t2[Y] and t1[Z] = t2[Z], and consequentlyt1[Y Z] = t2[Y Z].

Thus, given a setF of FDs, other FDs will generally be `implied' by this set
in the following sense:

De�nition 3.4.2 Given a setF of FDs on a schemaR, we say that F j= X !
Y , i.e. F logically implies X ! Y , if every instancer of R that satis�es F also
satis�es X ! Y .

From this de�nition, the previous example has shown that

f X ! Y; X ! Z g j= X ! Y Z
and
W � X fg j= X ! W

An interesting question is whether there is a way of computing all the possible
FDs logically implied by a set F , using a set of inference rules with the property
of being sound and complete so that we can derive mechanically all the FDs
implied by F , and only those.

32 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

3.4.2 Inference Rules

A set of inference rule to derive new FDs mechanically from a given set F are
the Armstrong axioms2:

F1 (re
exivity) If Y � X; then X ! Y
F2 (augmentation) If X ! Y; Z � T; then XZ ! Y Z
F3 (transitivity) If X ! Y; Y ! Z; then X ! Z

De�nition 3.4.3 F ` X ! Y i� X ! Y can be inferred fromF using Arm-
strong's axioms as inference rules.

Using these rules, the following rules can also be proved correct

f X ! Y; X ! Z g ` X ! Y Z (union rule)
Z � Y f X ! Yg ` X ! Z (decomposition rule)
fg ` X ! X
f X ! Yg ` XZ ! Y
W � Z; V � Y f X ! Yg ` XZ ! V W

So far, we have discussed derived dependencies in two ways: we have talked
about logically implied dependencies (j=) and about dependencies which are
inferred using Armstrong's axioms as deduction rules (̀). In fact, these two
ways of de�ning derived dependencies are the same: if a functional dependency
f can be inferred from a setF using Armstrong's axioms, then f is logically
implied by F (soundness), and, vice versa, if f is logically implied by F , then
f can also be inferred using Armstrong's axioms (completeness).

Theorem 3.4.1 Armstrong's axioms are sound and complete.

A consequence of this theorem is that we can substitutej= with ` and vice
versa in all the previous results.

3.4.3 Closure of a Set of FDs

De�nition 3.4.4 Given a set F of FDs, the closure ofF , denoted by F + , is:
F + = f X ! Y jF ` X ! Yg

Therefore, to test whether an FD V ! W is in F + (the implication prob-
lem) we can generate all the FDs inF + , which is a �nite set, by applying
Armstrong's axioms repeatedly. This way of solving the implication prob-
lem is generally found time-consuming, simply because the set of depen-
dencies in F + can be large even whenF itself is small. Consider the set
F = f A ! B1; : : : ; A ! Bng, then F + will includes all the dependencies
A ! Y , where Y is a subset off B1; : : : ; Bng and there are 2n of setsY .

A simpler way of solving the implication problem follows from the following
notion of closure of a set of attributes and theorem.

De�nition 3.4.5 Given a schemaR < T; F > , and X � T, the closure of X ,
denoted by X + , is X + = f A 2 TjF ` X ! Ag.

Theorem 3.4.2 F ` X ! Y i� Y � X + .

2. There are several equivalent sets of rules and we present just one of them here.

c
 A. Albano 3.4 Relational Database Design: Normalization Theory 33

Instead of computing F + , compute X + and then test whether Y � X + .
Therefore an algorithm to compute X + is

X + = X
while (changes toX +) do

for each W ! V in F with W � X + and V 6� X +

do X + = X + [V

It turns out that in the worst case this algorithm has time com plexity O(apminf a; pg),
where a is the number of attributes and p the number of FDs. A faster algo-
rithm, with time complexity O(ap), has been given by [?].

Using the notions of functional dependency and closure of sets of dependen-
cies, we can formally de�ne the concept ofkey of a relation.

De�nition 3.4.6 Given the schemaR < T; F > , we say that W � T is a key
(or a candidate key) of R if

1: W ! T 2 F +

2: 8V � W; V ! T 62F +

In general, there are many candidate keys for a relation, andwe designate one
of them as the primary key to be used in representing associations. We also
use the term superkeyfor any superset of a key and the termprime attribute
for an attribute which belongs to a candidate key. The following results have
been proved for keys:

1. The problem of �nding all the keys of a relation requires analgorithm with
an exponential time complexity.

2. The problem of testing whether an attribute is prime is N P -complete.

3.4.4 Covers of Sets of Dependencies

Let F and G be sets of dependencies on the same attributes. Using the notion
of closure we can determine when two sets of dependencies areequivalent and
thus when two schemas on the same attributes represent the same information.

De�nition 3.4.7 Two sets of FDs, F and G, over schemaR are equivalent,
written F � G, i� F + = G+ . If F � G, then F is a cover for G (and G a cover
for F).

It is easy to test whether F and G are equivalent: test if every dependency in
F is in G+ , and every dependency inG is in F + .

It is useful to have a cover for a given set of FDs which is easy to deal with
and which has simple and important properties. An example isgiven in the
following de�nition.

De�nition 3.4.8 Let F be a set of FDs

1. Given X ! Y 2 F , we say that X contains an extraneous attribute A i i�
X � f A i g ! Y 2 F + ;

2. X ! Y is a redundant dependencyi� X ! Y 2 (F � f X ! Yg)+ ;
3. F is called acanonical cover i�

- every right side of a dependency inF is a single attribute;
- no attribute on any left side is extraneous;

34 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

- no dependency inF is redundant.

Theorem 3.4.3 Every set of dependenciesF is equivalent to a set F 0 that is
a canonical cover.

The following example shows that in general a setF of FDs can have more
than one canonical cover.

Example 3.3 For the set F = f AB ! C; A ! B; B ! Ag both f A ! C; A !
B; B ! Ag and f B ! C; A ! B; B ! Ag are canonical covers.

An algorithm to compute a canonical cover based on de�nition3.4.8 has time
complexity O(a2p2).

3.4.5 Schema Decomposition

It has been shown that in order to eliminate anomalies from a bad schema,
the schema must be decomposed into smaller schemas. Let us de�ne formally
the notion of a decomposition and its desirable properties.

De�nition 3.4.9 A decomposition of a schemaR(T) is the substitution of
R(T) with a set � = f R1; : : : ; Rkg of schemasRi (Ti) such that [Ti = T.

There are two desirable properties of a decomposition,data preserving(lossless
join) and dependency preserving.

Data Preserving Decomposition

De�nition 3.4.10 Given a schemaR < T; F > , the decomposition� = f R1; : : : ; Rkg
is data preserving if for every legal instancer of R:

r = (� T1 r) ./ (� T2 r) ./ � � � ./ (� Tk r)

That is, every legal instance r is the natural join of its projections onto the
Ri 's. From the de�nition of the natural join operator, the foll owing result can
be proved.

Theorem 3.4.4 Let R < T; F > be a relation schema,� = f R1; : : : ; Rkg be
any decomposition ofR, and r any legal instance ofR. Then:

r � (� T1 r) ./ (� T2 r) ./ � � � ./ (� Tk r)

This theorem clari�es the notion of loss of information: in general a relation
is not recoverable from its decomposition, as it is shown by the following
example.

Example 3.4 Let us consider the following instance of the relationR(A; B; C):

A B C

a1 b c1

a2 b c2

c
 A. Albano 3.4 Relational Database Design: Normalization Theory 35

The following decomposition is not data preserving becauser � (� A;B r) ./ (� B;C r).

� A;B (r) = A B
a1 b
a2 b

� B;C (r) = B C
b c1
b c2

Since it is desirable for a decomposition to be data preserving, the following
theorem gives a condition which can be used to establish whenthis property
holds.

Theorem 3.4.5 Let R < T; F > be a relation schema, the decomposition
� = f R1; R2g is data preserving i� T1 \ T2 ! T1 2 F + or T1 \ T2 ! T2 2 F + .

This result has been extended by providing an algorithm to test whether a
decomposition in more than two smaller relations is data preserving.

3.4.6 Dependency Preserving Decomposition

De�nition 3.4.11 Given the schemaR < T; F > , and Ti � T , the projection
of F onto Ti is

� Ti (F) = f X ! Y 2 F + jX; Y � Ti g

Proposition 3.4.1 Given a schemaR < T; F > , and X � T, the problem of
�nding a canonical cover of the projection of F on X is N P -complete.

A simple algorithm for computing � Ti (F) is

Algorithm Projection of F onto Ti

input RhT; F i and Ti � T
output A cover of theprojection of F onto Ti

begin
for each Y � Ti do

begin
Z := Y +

F
return Y ! (Z \ Ti)

end
end

De�nition 3.4.12 Given a schemaR < T; F > , the decomposition� = f R1; : : : ; Rng
is dependency preserving i� [� Ti (F) � F .

A trivial algorithm for testing whether a decomposition � = f R1; : : : ; Rng
preserves a set of dependenciesF is to compute the projections ofF onto the
attributes Ti , take the union [Ti , and test whether this set is equivalent to
F . This algorithm will have an exponential time complexity. H owever a faster
algorithm exist which does not require the computation of the projections of
F onto the attributes Ti , and takes time that is polynomial in the size of F
[?].

The reason why it is desirable for a decomposition to preserve a set of
dependenciesF is that the dependencies inF are integrity constraints for the
relation R. If the projected dependencies did not implyF , then every update
to one of the Ri 's would require a join to check that the constraints were not
violated.

36 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

The data preserving and dependency preserving properties of a decompo-
sition are independent, i.e. there exist lossless decompositions which do not
preserve dependencies and vice versa. The following resultrelates the two
properties and gives a su�cient but not necessary condition to establish if a
dependency preserving decomposition is data preserving.

De�nition 3.4.13 Given a schemaR < T; F > and a dependency preserving
decomposition � = f Ri < T i ; Fi > g such that a Tj is a superkey for R <
T; F > , then � is data preserving.

3.4.7 Normalization Using Functional Dependencies

We now examine how functional dependencies can be used to de�ne several
normal forms which represent \good" database design. The most important
are the third normal form (3NF) and the Boyce-Codd normal form (BCNF).

De�nition 3.4.14 R < T; F > is in 3NF if, when X ! A 2 F + , and A 62X ,
then X includes a key orA is prime.

Example 3.5 A schema which is not in 3NF is

Employees(#Employee, NameOfEmployee, NameOfDept, InformationOnDept)
#Employee ! NameOfEmployee NameOfDept InformationOnDept
NameOfDept ! InformationOnDept

The relation Employeesis not in a desirable form since there is a repetition of infor-
mation: if there are several employees working in the same department, then we are
forced to repeat the information on the department for each employee.

If F is a canonical cover, then the following result holds

Proposition 3.4.2 R < T; F > is in 3NF if, when X ! A 2 F , X is a key or
A is prime.

Since, for both the de�nitions, we need to know if an attribut e is prime in
order to test whether a relation schema is in 3NF, we will havethe following
result.

Proposition 3.4.3 The problem of deciding whether a relation schemaR <
T; F > is in 3NF is N P -complete.

Example 3.6 Let us consider the following schemaZipCodes(City, Street, Zip), with
FDs

City Street ! Zip
Zip ! City

That is, the address (city and street) determines the zip code, and the zip code
determines the city, although not the street address. Sincethe candidate keys are
f City, Streetg, f Street, Zipg, all attributes are primes, and thus the schema is in 3NF,
but it su�ers from the repetition of information problem. Co nsequently, 3NF does not
solve the problem of detecting \bad" schemas completely andanother normal form is
required.

c
 A. Albano 3.4 Relational Database Design: Normalization Theory 37

De�nition 3.4.15 R < T; F > is in BCNF if, when X ! A 2 F + , and A 62X ,
then X is a superkey.

The schemaZipCodes(City, Street, Zip) from Example 3.6 is a well known
example showing that a relation schema can be in 3NF without being in BCNF.
If F is a canonical cover, then the following result holds

Proposition 3.4.4 R < T; F > is in BCNF if, when X ! A 2 F , X is a key.

From this de�nition, it follows that an algorithm to test whe ther a single
relation schema is in BCNF has a complexityO(ap2).

Proposition 3.4.5 Given a schemaR < T; F > , X � T, and F 0 the projection
of F onto X , the problem of deciding if R0 < X; F 0 > is in BCNF is N P -
complete.

3.4.8 Polynomial Algorithms to Normalize in 3NF and BCNF

A Synthesis Algorithm for 3NF

The best known synthesis algorithm was proposed by Bernstein [?]. The basic
steps are the followings: (1) �rst a canonical coverG of the FDs is computed;
(2) G is then partitioned into groups Gi such that all the FDs in each Gi will
have the same left-hand side and no two groups will have the same left-hand
side; (3) eachGi then produces a 3NF relation schema composed of all the
attributes in Gi . The algorithm will obviously provide a dependency preserving
decomposition.

However, in order to avoid the synthesis of super
uous schemas, this basic
algorithm must be extended, as shown in the following example.

Example 3.7 Let F = f A ! B; B ! A; C ! D; D ! Cg; F is a canonical cover and
the basic algorithm generates the following schemas:R1(A; B), R2(A; B), R3(C; D),
and R4(C; D), while two relations are su�cient, R1(A; B) and R3(C; D).

The extension of the basic algorithm is reported in Bernstein [?] where it is
also shown that its complexity is O(a2p2). In [?], another step has been added
to the algorithm to produce a set of relation schemas in 3NF that has both
the data and dependency preservation properties. It requires that the �nal set
of relation schemas includes a relation whose key is also thekey of the relation
which contains all the attributes in the initial FDs, which a re the inputs to
the synthesis algorithm.

As a consequence of this result, we have that it is faster to produce a set
of relation schemas in 3NF, than to test whether a single relation schema is
already in 3NF.

As there is no synthesis algorithm which can be used to produce a relation
schema in BCNF, another approach must be used.

A Decomposition Algorithm for BCNF

The goal of a decomposition algorithm is to convert a relation schema which
is not in BCNF into a set of relations: If R(X; Y; Z) is not in BCNF because of
X ! Y , R is decomposed into:R1(X; Y) and R2(X; Z). The process continues
as long as theRi are not in BCNF. Therefore a decomposition algorithm is:

38 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

� = f R < T; F > g
while exists in � a Ri < T i ; Fi > not in BCNF because of the FD X ! A do

T1 = X A
F1 = � T1 (Fi)
T2 = Ti � A
F2 = � T2 (Fi)
� = � � Ri + f R1 < T 1; F1 >; R 2 < T 2; F2 > g

end

The decomposition is data preserving but, in general, not dependency preserv-
ing, as shown by the following example:R < f J; K; L g; f JK ! L; L ! K g >
is not in BCNF, however every decomposition will fail to preserve JK ! L .
Thus, obtaining a data and dependency preserving decomposition is an im-
possible goal.

[?] gave an algorithm with a polynomial time complexity O(a5p) to com-
pute a data preserving decomposition in BCNF, although it will sometimes
decompose a relation that is already in BCNF. However, the problem of de-
ciding whether a relation schema has a dependency preserving decomposition
in BCNF is N P -hard.

3.4.9 Multivalued Dependencies and Fourth Normal Form

We have introduced the concepts of functional dependency, 3NF, and BCNF
normal forms to avoid schemas with anomalies. Unfortunately, 3NF and BCNF
are insu�cient to solve the problem. For example, the relati on Employees(EmplName,
ChildName, Salary, Year), used to store information about the children and
salary histories of employees, is in BCNF (there are no FDs),however there
is a lot of data redundancy.

Employees

EmplName ChildName Salary Year

Bragazzi Maurizio 1000000 1980
Bragazzi Maurizio 1200000 1984
Bragazzi Maurizio 1400000 1988
Bragazzi Marcello 1000000 1980
Bragazzi Marcello 1200000 1984
Bragazzi Marcello 1400000 1988
Fantini Maria 1000000 1980
Fantini Maria 800000 1984
Fantini Maria 600000 1988

Informally, data redundancy occurs whenever a multivaluedproperty is rep-
resented in a relation schema together with another simple or multivalued
independent property. An example is when we attempt to represent the chil-
dren and salary histories properties for employees. If we had represented only
one of these properties in a relation, we would not have had this a problem:

EmployeeSalaries (EmplName, Salary, Year).
EmployeeChildren (EmplName, ChildName)

To deal with this redundancy, the concept ofmultivalued dependencies(MVDs)
is needed. MVDs unlike FDs, are not only a property of the information rep-
resented by relations, but are dependent on the way attributes are grouped
into relations.

De�nition 3.4.16 Given a schemaR(T); X; Y subsets ofT, Z = T � XY , there
is in R a multivalued dependency (MVD) X !! Y , read \X multidetermines

c
 A. Albano 3.4 Relational Database Design: Normalization Theory 39

Y", i� in any instance r of R, for any two tuples t1; t2 2 r with t1[X] = t2[X],
there exists a tuple t3 2 r such that t3[X] = t1[X] = t2[X]; t3[Y] = t1[Y], and
t3[Z] = t2[Z].

Exchanging the roles oft1 and t2 in the de�nition, we have that in addition to
t3, a tuple t4 must exist such that t4[X] = t1[X] = t2[X]; t4[Y] = t2[Y], and
t4[Z] = t1[Z].

For example, in the relation Employees, the MVD EmplName !! Child-
Name holds; let

t1 = (Bragazzi, Maurizio, 1000000, 1980)
t2 = (Bragazzi, Marcello, 1200000, 1984)

then the following tuples will also exist in the relation

t3 = (Bragazzi, Maurizio, 1200000, 1984)
t4 = (Bragazzi, Marcello, 1000000, 1980)

Let D denote the set of functional and multivalued dependencies.The closure,
D + , of D is the set of all functional and multivalued dependencies logically
implied by D . As was the case for functional dependencies, we can reason
about D using a set of inference rules.

Theorem 3.4.6 [?] The following axioms are sound and complete for func-
tional and multivalued dependencies:

F1 (re
exivity) If Y � X , then EX ! Y
F2 (augmentation) If X ! Y; Z � T, then XZ ! Y Z
F3 (transitivity) If X ! Y; Y ! Z , then X ! Z
M1 (complemention) If X !! Y , then X !! T � XY
M2 (multivalued augmentation) If V � W; W � T; X !! Y , then XW !! Y V
M3 (multivalued transitivity) If X !! Y; Y!! Z , then X !! Z � Y
M4 (replication) If X ! Y , then X !! Y
M5 If Z 0 � Z; Y \ Z = ; ; X !! Y; Y ! Z 0, then X ! Z 0

The following theorem shows how MVDs are related to losslessdecomposition.

Theorem 3.4.7 Let R < T; D > be a relation schema and� = f R1; R2g a
decomposition of R. Then � is data preserving i� T1 \ T2!! T1 2 D + (or
equivalently T1 \ T2!! T2 2 D +).

If we consider a particular instancer , we will have the following result, which
is a more general statement of the similar result for FDs.

Theorem 3.4.8 Let R < T; D > be a relation schema, and� = f R1; R2g a
decomposition; an instancer of R which satis�es D decomposes on� without
loss of information i� r satis�es T1 \ T2!! T1 (or equivalently T1 \ T2!! T2)

This theorem gives us a method which can be used to test if an instancer of
a relation R < T; D > satis�es the MVD X !! Y . We project r onto XY and
X (T � XY), join the two projections, and test if the result is r .

Finally, there is a generalization of a Boyce-Codd normal form, called fourth
normal form (4NF), that applies to relation schemas with functional and mul-
tivalued dependencies.

40 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

De�nition 3.4.17 An MVD over R < T; D > is trivial if X !!; , where ; is
an empty set of attributes, or X !! T � X .

De�nition 3.4.18 A relation schema R < T; D > is in 4NF if for every non-
trivial MVD X !! Y in R, X is a superkey ofR.

The following result shows that 4NF is a generalization for BCNF.

De�nition 3.4.19 If R < T; D > is in 4NF then it is in BCNF.

A relation that is not in 4NF can be decomposed in much the sameway
as we constructed BCNF database schemas. The resulting decomposition is
data preserving. However, in general, it is not possible to design a database
schema that meets the three criteria: 4NF, dependency preservation, and data
preservation. Moreover, it is not known how (or if) a synthesis algorithm can
handle MVDs.

Other kinds of dependencies have been de�ned to avoid other forms of data
redundancy in a relation schema. The interested reader may consult [?] for a
fuller discussion of dependency theory, including other topics which have not
been addressed here.

3.4.10 Exercises

1. Prove that for a schemaR < T; F > , with F a canonical cover, if an attribute A i
does not appear in the right side of any FD, thenA i belongs to every key ofR.

2. Prove that if a schemaR < T; F > has two attributes only, then it is in BCNF.
3. Prove that if a schema R < T; F > is in 3NF, and all keys are made of one

attributes, then it is in BCNF. Hint : prove that for each X ! A 2 F , X is a
superkey.

4. For each of the following relational schemas and set of functional dependencies:

(a) R(A; B; C; D) with functional dependenciesAB ! C, C ! D , and D ! A.
(b) R(A; B; C; D) with functional dependenciesA ! B , and A ! C.
(c) R(A; B; C; D) with functional dependenciesA ! B , and B ! C.

do the following:

(a) Find all the keys of R,
(b) Indicate all the BCNF violations.
(c) Decompose the relations, as necessary, into collections of relations that are in

BCNF. Say if the decomposition is dependency preserving.
(d) Indicate all the 3NF violations.
(e) Decompose the relations, as necessary, into collections of relations that are in

3NF and are data preserving.

5. Consider the following poorly designed relational schema:

UnivInfo(studID, studName, course, profID, profO�ce)

Each tuple in relation UnivInfo encodes the fact that the student with the given ID
and name took the given course from the professor with the given ID and o�ce.
Assume that students have unique ID's but not necessarily unique names, and
professors have unique ID's but not necessarily unique o�ce. Each student has
one name; each professor has one o�ce.

(a) Specify a set of completely nontrivial functional dependencies for relation Uni-
vInfo that encodes the assumptions described above but no additional assump-
tions.

c
 A. Albano 3.4 Relational Database Design: Normalization Theory 41

(b) Decompose relation UnivInfo into BCNF according to your functional depen-
dencies in part (1).

(c) Now add the following two assumptions: (1) No student takes two di�erent
courses from the same professor; (2) No course is taught by more than one
professor. Modify your set of functional dependencies frompart (a) to take
these new assumptions into account.

42 CHAPTER 3 Database: The Relational Designer Perspective c
 A. Albano

Chapter 4

DBMS: THE USER
PERSPECTIVE

4.1 Objectives of a DBMS

The most common class of computer applications is used to store, maintain,
and retrieve large quantities of persistent data, i.e. datathat are required to
last longer than the duration of the execution of the programs using them. All
computerized information systems, whether in a public or private environment,
fall into this class.

During the 1950s and most of the 1960s, these kinds of applications were
developed using programming languages with�les , collections of homogeneous
records with the property of persistency. The responsibility for organizing and
maintaining data rested entirely on the application programmers. The logical
and physical structure of the data was described in the programs and the code
to manipulate the data was dependent on these structures. Inaddition, this
coupling of programs and data tended to make �les speci�c to individual ap-
plications, precluding the sharing of common data among related applications.
Consequently, it was common to have multiple copies of the same data which
comported problems of consistencies between di�erent versions and ine�cient
use of storage. Finally, the need for familiarity with programming languages in
order to use data, often prevented the end-users, i.e. non computer profession-
als, from getting direct access to the data without going through a programmer
intermediary.

In the late 1960s and early 1970s, a series of software systems were devel-
oped to simplify the task of maintaining and accessing persistent data. These
systems began evolving to database management systems by centralizing the
control of data and providing a uniform interface to it: the system rather
than a user's application program has the responsibility for maintaining and
manipulating data by providing the application programs wi th a logical view
of the data, hiding the details of the structures employed tostore and access
them. In addition, to simplify the programming task of each user, the database
management system promotes the sharing of data among users.

The term database is sometimes used for any computerized collection of
data. Here, we use a more narrow de�nition which restricts the use of the
term to what is sometimes calledformatted data.

44 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

De�nition 4.1.1 A database is a collection of persistent data, partitioned into
two:

a) the schema, a collection of time-invariant de�nitions which describe the
structure of admissible data, as well as constraints on legal data values, i.e.
integrity constraints, (the intensional database);

b) the data, a time-variant representation of speci�c facts (the extensional
database), with the following characteristics:

- they are organized in sets, and associations are de�ned between these
sets using the abstraction mechanism of adata model;

- they occur in large quantities and do not �t in a conventional main
memory;

- they are persistent, i.e. once created, the data continue to exist until
being explicitly deleted;

- they are accessed by anatomic work unit (called transaction) which,
when executed, commits either all or none of the changes e�ected to the
extensional database;

- they are protected both from unauthorized users and from hardware and
software failures;

- they are shared concurrently by several users1.

All above features are guaranteed by aData Base Management System(DBMS),
de�ned as follows:

De�nition 4.1.2 A DBMS is a centralized or distributed software system,
which provides the tools to de�ne the database schema, to select the data
structures needed to store and retrieve data easily, and to access the data,
interactively using a query language or by means of a programming language.

A more detailed presentation of the operational facilitiesprovided by a DBMSs
follows.

4.2 Functions of a DBMS

A DBMS will provide a number of di�erent services and utiliti es. However,
some DBMSs, especially those designed for personal computers, provide only
a subset of the capabilities that will be discussed below. For example, in order
to keep the system price low, many small systems do not provide facilities for
concurrency control and data recovery. In general, however, such facilities are
considered essential in the computerized information systems implemented in
medium-sized or large organizations.

4.2.1 Separation of Data Description and Data Manipulation

In programming languages, the data declarations and the executable state-
ments usually constitute a single program module. With DBMSs, instead,
there is a separation of the database description, theschema, from applica-
tion programs that use data. Several levels of data description are supported:
physical level, logical level, logical view level.

1. The term \user" is adopted throughout this paper to mean ei ther an end-user or an
application program which is performing data manipulation operations.

c
 A. Albano 4.2 Functions of a DBMS 45

The physical levelis the lowest level of abstraction at which the database is
described. This level contains the description of the data structures used to
store and access the data. The principal data structures used will be discussed
in sections??{ ??.

The logical level, often called the conceptual level, is the next level of ab-
straction and describes the logical structure of the data and the relationships
established among them, i.e. the schema, using a language which supports the
abstraction mechanisms of a particular data model. The language used for the
classical data models | the hierarchical, network, and rela tional data models,
discussed below | is called the Data Description Language(DDL), since only
data are described in the database schema and not proceduralaspects.
The logical view level is the level at which that part of the entire database
which is accessible to a certain class of users is described (external schema).
There may be many views of the same database, and all of them are de�ned in
terms of the schema given at the logical level. For example, only some classes
may be accessible and only a subset of the attributes of an element are visible
for a particular user category. An external schema is not necessarily a subset
of a schema, it can also contain new classes, de�ned in terms of those actually
present in the database.

The description of the database at these di�erent levels is given by the
person responsible for creating the database, usually known as the database
administrator (DBA), and the information in the schema is usually stored in
a system catalog, described in the following, which constitutes an additional
database that can be queried by users .

Example 4.1 The di�erence between the levels of data description can be under-
stood using an example of a relational database for university employees. At the
logical level, the database structure is described in termsof the following table:

CREATE TABLE Persons (Name CHAR(30),
FiscalCode CHAR(15),
Salary INTEGER,
Status CHAR(6),
Address CHAR(8))

At the logical view level, to the administration o�ce and to t he library is not allowed
to access all the information in the table Persons, but only a subset of them:

CREATE VIEW PersonsForAdministration AS
SELECT Name, FiascalCode, Salary, Status
FROM Persons

CREATE VIEW PersonsForLibrary AS
SELECT Name, Address
FROM Persons

A view is a table computed from others as we will see later.
Finally, at the physical level, the database designer selects a data organization

for each database table from a set of possible options, e.g.,sequential, hash or tree
structured organizations. However, the user of a class willbe unaware of the physical
organization selected for this class:

MODIFY Persons TO HASH ON Name

46 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

These three levels of data description were proposed in 1978by the ANSI/X3/
SPARC study group on DBMSs, with the aim of guaranteeing two important
properties: physical and logical data independence.

Physical data independencemeans that modi�cations to the physical database
organization will not imply modi�cations to applications p rograms.

Logical data independencemeans that the mechanism used to de�ne external
schemas should ensure that certain modi�cations to the logical schema, such
as adding new de�nitions for example, will not comport changes to the appli-
cation programs, but simply a rede�nition of the associated external schemas
in terms of the new logical schema. The only kind of change in the logical
schema that cannot be re
ected in a rede�nition of an external schema is the
deletion of information in the logical schema which corresponds to information
present in the external schema. Logical data independence is highly desirable
because of the costs involved in software maintenance.

Although these three levels of data description are not supported in most
DBMSs, some systems, for example the relational ones, have physical and
logical data independence.

4.2.2 Database Languages

The operators associated to the data model used to access or modify the
database constitute the so-calledData Manipulation Language (DML) of a
DBMS. Typically, the DML may be used either in a stand-alone mode as a
query or update language, or it may be used in a host language mode, i.e.
embedded in a programming language.

There are two kinds of data manipulation operators:

- procedural, which are \record oriented", in the sense that they deliver one
record at a time and require that a user, wishing to retrieve aparticular
set of records, writes a procedure which implements an appropriate search
strategy to \navigate" through the database structure;

- nonprocedural, or declarative, which are \set oriented", in the sense that
they deliver a set of records satisfying a condition and require a user to
characterize the data he wants, with the system assuming theresponsibility
for devising an appropriate search strategy.

In addition to query language and programming language interfaces for the
application programmer, a DBMS will o�er a language for report generation,
i.e. a language in which the user can specify a query togetherwith requirements
on the visual form of output, and a language fordata entry, i.e. a language
in which non-computer professionals can specify database entry and update
on-line.

4.2.3 Data Control

A DBMS provides a number of facilities to control the physical and logical
integrity of data. These facilities are:

- access control which limits the kind of access to the database allowed to
a particular user. In fact, although the purpose of a DBMS is to facilitate
database sharing by users, this sharing must be selective. The owner of data
should be able to specify the nature of the access privilegesallowed to those

c
 A. Albano 4.2 Functions of a DBMS 47

users who will access the data (i.e. read only or read/write), to allow certain
users to see only certain �elds or certain records, or even toallow only a
view of aggregate values (such as averages);

- integrity control which prevents data which violate the constraints declared
in the database schema from being entered into the database;

- concurrency control which ensures that users simultaneously accessing a
database do not interfere with one another. In fact, when more than one
user accesses the same data, unpredictable results can occur.

Example 4.2 Let us assume that John and Jane have a joint savings account and
both go to di�erent tellers. The current balance is $350. Jane wishes to add $400
to the account. John wishes to withdraw $50. Let us assume thefollowing events
happen in the order in which they are shown:
Jane's teller reads $350,
John's teller reads $350,
Jane's teller writes $750,
John's teller writes $300,

The account now reads $300, and this certainly is not a correct way to allow more
than one person to use the same account.

- data recoverywhich entails restoring the database to a consistent state after
the occurrence and detection of a failure. A database may become incon-
sistent because of atransaction failure, a system failure, or a media (disk)
failure.

De�nition 4.2.1 A transaction is a sequential program with embedded database
operations and the following properties, often called the ACID properties:

- atomicity : only committed transactions change the database, if a transac-
tion aborts, the state of the database should remain unchanged as if no
operations of the aborted transaction had occurred;

- persistency: the e�ects of a committed transaction are permanent and must
survive system and media failures, i.e. commitment is an irrevocable act;

- serializability : when a transaction is executed concurrently with others, the
�nal e�ect must be the same as a serial execution of transactions that exe-
cute to completion; i.e. the DBMS behaves as if it executes the transactions
one at a time.

De�nition 4.2.2 A transaction failure is an interruption of a transaction which
does not damage the content of both the temporary memory (bu�ers) and the
permanent memory.

A transaction can be interrupted because (a) the program hasbeen coded
in such a way that if certain conditions are detected then an abort must
be issued, (b) because the DBMS detects a violation by the transaction of
some integrity constraint or access right, or (c) because itwas decided to
terminate the transaction since it was involved in a deadlock detected by the
DBMS. When a transaction aborts, its actions are undone automatically by the
recovery facility, restoring the database to the same state it had at beginning
of the transaction.

De�nition 4.2.3 A system failure is an interruption (crash) of the system
(either the DBMS or the computer) in which the contents of the temporary
memory are lost, but the contents of the permanent memory remain intact.

48 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

Table Type of Information
SYSTABLES Information about the relational tables
SYSCOLUMNS Information about the columns in tables and views
SYSVIEWS Information about views
SYSINDEXES Information about the indexes on tables
SYSKEYS Information about the keys on tables

Figure 4.1 Examples of system catalog tables

When a system crash occurs, the DBMS is restarted (automatically or by an
operator). The DBMS ensures that all transactions which were not completed
at the time of the crash are undone, whereas all those which were completed
have their e�ects reapplied to the database if necessary.

De�nition 4.2.4 A media failure, or a catastrophe, is an interruption of the
DBMS in which the contents of the permanent memory are lost.

When a media failure occurs, the recovery facility can use its historical data
to reconstruct the current database contents starting from a prior version of
the database.

Techniques used by DBMSs for concurrency control and data recovery will
be considered later.

4.2.4 A User-Accessible System Catalog

The system catalog (data dictionary or meta-data, the `data about data')
is a special purpose database, maintained by the system, to store data that
describe the structure of the objects in a database.

The catalog schema is designed by the DBMS vendor, and an instance of
the catalog is created automatically whenever a new database is created. The
catalog can be queried as any other databases. Examples of catalog tables for
a relational DBMS are described in Figure 4.1.

4.2.5 Facilities for the Database Administrator

DBMSs provide important facilities for the data administra tor; he needs tools
to accomplish at least the following tasks:

- de�nition of the database schema;
- speci�cation of integrity constraints;
- de�nition of external schemas for di�erent applications;
- de�nition of data structures to improve the performance of the database

operations;
- granting of data access authorization to the various usersof the database;
- monitoring of DBMS performances and database tuning;
- restoring the database after a media failure and restructuring the database

when the schema changes.

c
 A. Albano 4.3 SQL: A Relational Database Language 49

4.3 SQL: A Relational Database Language

SQL (Structured Query Language) is the most widely used relational database
language. An initial version was proposed in 1975, the standard version is
called SQL-92, and recently was completed the SQL:99 version for object
databases. The purpose of the following sections is to introduce just some
of its features, since a full treatment of the language is beyond the scopes of
this report.

4.3.1 The Data De�nition Sublanguage

A relation schema is speci�ed using the CREATE TABLE statement of SQL.
This statement has a rich syntax which we will not introduce here. As a bare
minimum, CREATE TABLE speci�es the typing constraint: the name of a relation
and the names of the attributes with their associated types.However, the same
statement can also specify primary and candidate keys, foreign key constraints,
and other semantic constraints.

The Students relation is de�ned as follows:

CREATE TABLE Students (
Name CHAR(20) NOT NULL,
StudentCode CHAR(8) NOT NULL,
City CHAR(20),
BirthYear INTEGER NOT NULL,

PRIMARY KEY (StudentCode),
UNIQUE (Name, BirthYear)
CHECK (BirthYear > 1900));

Null values are not allowed in keys. One additional feature to note is that a
default value can be speci�ed for an attribute. This value will be automatically
assigned to the attribute of a tuple should the tuple be inserted without this
attribute being given a speci�c value. Semantic constraints are speci�ed using
the CHECK clause.

A relation schema can be modi�ed using theALTER TABLE statement and
deleted with the DROP TABLE statement.

In relational databases, it is common for tuples in one relation to reference
tuples in the same or other relations to model associations.It is a violation of
data integrity if the referenced tuple does not exist in the appropriate relation.
For example, it makes no sense to have aExamResults tuple with candidate
100 and not have the tuple with StudentCode = 100 in the relation Students.
The requirement that the referenced tuple must exists is called referential
integrity . One important type of referential integrity is the so-called foreign
key constraint.

The following example shows how foreign key constraints arespeci�ed in
SQL:

CREATE TABLE ExamResults (
Subject CHAR(20) NOT NULL,
Candidate CHAR(8) NOT NULL,
Date CHAR(8) NOT NULL,
Grade INTEGER NOT NULL,

PRIMARY KEY (Subject, Candidate),
FOREIGN KEY (Candidate)

REFERENCES Students
ON DELETE NO ACTION);

50 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

The FOREIGN KEY clause has the optionON DELETE to specify what to do if a
referenced tuple is deleted.NO ACTION means that any attempt to remove a
Students tuple must be rejected outright if the student is referencedby a Exam-
Resultstuple. The option ON DELETE CASCADEmeans that the referencing tuple
is to be removed too. The optionON DELETE SET NULL means that the foreign
key attributes in the references tuple must be set toNULL. Similar options are
provided for the option ON UPDATE. NO ACTION is the default situation when
ON DELETE or ON UPDATE is not speci�ed.

More general remedial actions can be speci�ed when a constraints is violated
using the trigger mechanism: Whenever a speci�cevent occurs, a speci�ed
action is executed.

Besides ordinary tables, also virtual tables (calledviews) can be de�ned with
the CREATE VIEW statement. A view can be queried as an ordinary table, but
its content does not physically exists in the database, instead, a de�nition of
how to construct the view from ordinary database tables is given as a query
with the CREATE VIEW statement and stored in the system catalog.

For example, the following view de�nes the students of Pisa:

CREATE VIEW PisaStudents AS
SELECT Name, StudentCode, BirthYear
FROM Students
WHERE City = 'Pisa';

Access Control

Since databases often contain sensitive information, a DBMS ensures that
only those authenticated users who are authorized to accessthe database are
allowed to and they are only allowed to access information that has been
speci�cally made available to them.

SQL provide the GRANT and REVOKE statements to allow security to be set
up on the tables in the database. When a user create a table he automatically
becomes the owner of the table and receives full privileges for the table. To
allow other users the access to the table, the owner must explicitly grant them
the necessary privileges using theGRANT statements:

GRANT f privilegeList j ALL PRIVILEGESg [(columnName [, columnName])]
ON objectName
TO f authorizationIdList j PUBLIC g
[WITH GRANT OPTION]

Privileges are the actions that a user is permitted to carry on a given base
table or view (the objectName); examples are:

{ SELECT: To retrieve data from a table.
{ INSERT, MODIFY, DELETE: To insert, to modify or to delete rows.
{ REFERENCES: To reference columns of a table in integrity constraints.

The INSERT, MODIFY, and REFERENCESprivileges can be restricted to speci�c
columns of a table. The WITH GRANT OPTION clause allows the users in the
authorization list to pass the privileges that they have to others users.

Example 4.3 Granting and revoking privileges to users:

GRANT ALL PRIVILEGES
ON MyTable
TO MyFriend WITH GRANT OPTION;

c
 A. Albano 4.3 SQL: A Relational Database Language 51

GRANT SELECT, UPDATE(Grade)
ON Exams
TO Albano;

GRANT SELECT
ON Students
TO PUBLIC;

REVOKE SELECT
ON Students
FROM PUBLIC;

4.3.2 The Query Sublanguage

The SELECT statement is used to retrieve data from relations. Suppose you
wanted to retrieve from the Students table the information on student named
\Rossi". This is called making a query. To do it, you could issue the following
statement:

SELECT *
FROM Students
WHERE Name = 'Rossi';

SELECT is a keyword telling the database that this is a query. The asterisk
means to retrieve all columns; alternatively, you could have listed the desired
columns by name, separated by commas. TheFROM Students clause identi�es
the table from which you want to retrieve the data.

WHERE Name = 'Rossi' is a predicate, and all rows that make the predicateTRUE
are returned. This is an example of set-at-a-time operation. The predicate is
optional, but in its absence the operation is performed on the entire table, so
that, in this case, the entire table would have been retrieved. The semi-colon
is the statement terminator.

The relationship between SQL and relation algebra is as follows:

Set union: R [S is equivalent to

SELECT *
FROM R

UNION
SELECT *
FROM S;

Set di�erence: R � S is equivalent to

SELECT *
FROM R

EXCEPT
SELECT *
FROM S;

Projection: � A 1 ;A 2 ;:::;A m (R) is equivalent to

SELECT DISTINCT A1 ; A 2 ; : : : ; A m

FROM R;

52 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

Selection: � Condition (R) is equivalent to

SELECT *
FROM R
WHERE Condition;

Product: R � S is equivalent to

SELECT *
FROM R; S;

Join: R ./
R:A i = S:A j

S is equivalent to

SELECT *
FROM R; S
WHERE R:A i = S:A j ;

Natural Join: R ./ S is equivalent to

SELECT *
FROM R NATURAL JOIN S;

Nulls and Three-Valued Logic

With predicates, a three-valued logic is used. In SQL, the basic Boolean values
of TRUE and FALSEare supplemented with another:NULL, also calledUNKNOWN.
This is because SQL acknowledges that data can be incompleteor inapplica-
ble and that the truth value of a predicate may therefore not be knowable.
Speci�cally, a column can contain a null, which means that there is no known
applicable value. A comparison between two values using relational operators
{ for example, a = 5 { normally is either TRUE or FALSE. Whenever nulls are
compared to other values, however, including other nulls, the boolean value is
neither TRUE nor FALSE but itself NULL.

In most respects,NULL has the same e�ect asFALSE. The major exception
is that, while NOT FALSE = TRUE , NOT NULL = NULL . In other words, if you
know that an expression isFALSE, and you negate it, then you know that it
is TRUE. If you do not know whether it is TRUE or FALSE, and you negate it,
you still do not know. In certain cases, three-valued logic can create problems
with your programming logic if you have not accounted for it. You can treat
nulls specially in SQL with the IS NULL predicate.

Aggregation over Data

SQL provides �ve built-in functions, called aggregate functions, which operates
on set of tuples. They are:

{ COUNT([DISTINCT] Attr) : Count the number of values in column Attr of the
query result. The optional keyword DISTINCT indicates that each value
should be counted only once, even if it occurs multiple timesin di�erent
answer tuples.COUNT(*) counts the number of tuples of the query result.

{ SUM([DISTINCT] Attr) : Sum up the values in columnAttr of the query result.
DISTINCT indicates that each value should contribute to the sum only
once, regardless of how often it occurs in columnAttr .

c
 A. Albano 4.3 SQL: A Relational Database Language 53

{ AVG([DISTINCT] Attr) : Compute the average of the values in columnAttr of the
query result. Again DISTINCT means that each value should beused only
once.

{ MAX(Attr), MIN(Attr) : Compute the maximum or the minimum value in the
column Attr .

For example, the following query returns the number of students tuples:

SELECT COUNT(*)
FROM Students;

The following query returns the average birth year of students:

SELECT AVG(BirthYear)
FROM Students;

Note that it is not possible to mix an aggregate function and an attribute in
this form of SELECT, as in

SELECT Name, AVG(BirthYear)
FROM Students;

To write such kind of SELECT the GROUP BY clause must be used:

SELECT Name, AVG(BirthYear)
FROM Students
GROUP BY Name;

GROUP BY partition a set of tuples into groups whose membership is charac-
terized by the fact that all of the tuples in a single group agree on the values
in the speci�ed set of attributes. The aggregate function then applies to the
groups and produces a single value for each group. The resultis a relation
having two attributes, the student name and the average birth year. The im-
portant point is that each column in the SELECT clause either must be in the
GROUP BY clause or must be the result of an aggregate function.

The HAVING clause is used in conjunction withGROUP BY: It is used to specify
a condition that restricts which groups (speci�ed in the GROUP BY clause) are
to be considered for the �nal query result. Groups that do not satisfy the
condition are removed before the aggregates are applied.

SELECT Name, AVG(BirthYear)
FROM Students
GROUP BY Name
HAVING COUNT(*) > 0;

The HAVING condition (unlike the WHERE condition) is applied to groups, not
to individual tuples (Figure 4.2).

Finally, the order of tuples in the query result is generally unpredictable. If
a particular ordering is desired, theORDER BY clause can be used:

SELECT Name, BirthYear
FROM Students
ORDER BY Name;

Ascending order is used by default, but descending order canalso be speci�ed:

SELECT Name, BirthYear
FROM Students
ORDER BY DESC Name;

54 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

!"
!"#"$%&&&&&&& '(()*+&',,)-,.(-*
#$%&'''''''''''$()*+,-./
012$2'''''''' $(3-45/'6-.5,+,-.
/0123&45&& /)678&'(()*
9':;</&&&&&&& /)678&$6=>?(?6=

!"#"$%&&&&&&& '(()*+&',,)-,.(-*
@01A&&&&&&&&&&& 0-B.(?6=*
C9"0"&&&&&&&& 0-D6)>*&$6=>?(?6=
7$%89'!:'' 74-;<'=++4/
9':;</&&&&&&& /)678&$6=>?(?6=

!"#"$%&&&&&&& '(()*+&',,)-,.(-*
@01A&&&&&&&&&&& 0-B.(?6=*
C9"0"&&&&&&&& 0-D6)>*&$6=>?(?6=
/0123&45&& /)678&'(()*
1=>?@7''''''' 74-;<'6-.5,+,-.

A2B26C''''''' =++4/D'=EE4(E*+(/
@01A&&&&&&&&&&& 0-B.(?6=*
C9"0"&&&&&&&& 0-D6)>*&$6=>?(?6=
/0123&45&& /)678&'(()*
9':;</&&&&&&& /)678&$6=>?(?6= F;(4G'

$(/;)+

Figure 4.2 Query evaluation withGROUP BY

Nested Queries

Nested subqueries increase the expressive power of SQL, butare one of the
most complex, expensive, and error-prone feature of SQL.

Consider the querylist the student code of the students who did not pass any
exams:

SELECT StudentCode
FROM Students
WHERE StudentCode NOT IN (

== Students who have passed an exam
SELECT Candidate
FROM ExamResults) ;

Another useful operator is EXISTS to check if a nested subquery returns no
answer. For example, here is another formulation of the above query:

SELECT StudentCode
FROM Students s
WHERE NOT EXISTS (

== All exams passed by a student
SELECT *
FROM ExamResults
WHERE Candidate = s.StudentCode) ;

4.3.3 Modifying Relation Instances

Relation instances are modi�ed with the operators INSERT, UPDATE, and DELETE.
INSERT places rows in a table,UPDATE changes the values they contain, and
DELETE removes them.

c
 A. Albano 4.3 SQL: A Relational Database Language 55

For INSERT, you simply identify the table and its columns and list the values,
as follows:

INSERT INTO Students (Name, StudentCode, City, BirthYear)
VALUES ('Rossi', '01234', 'Pisa', 1990);

This statement inserts a row with a value for every column but. If a value is
speci�ed for every column of the table, and the values are given in the same
order as the columns in the table, the column list can be omitted. A SELECT
statement can be used in place of theVALUES clause of theINSERT statement
to retrieve data from elsewhere in the database.

UPDATE is similar to SELECT in that it takes a predicate and operates on all
rows that make the predicate TRUE. For example:

UPDATE Students
SET City = 'Florence'
WHERE Name = 'Rossi';

This sets to `Florence' the city for the student named `Rossi'. The SET clause
of an UPDATE command can refer to current column values. \Current" in thi s
case means the values in the column before any changes were made by this
statement.

DELETE is quite similar to UPDATE. The following statement deletes all rows
for students from `Pisa':

DELETE FROM Students
WHERE City = 'Pisa';

You can only delete entire rows not individual values. To do the latter, use
UPDATE to set the values to null. Be careful with DELETE that you do not omit
the predicate; this empties the table.

4.3.4 Executing SQL Statements within Application Program s

In the previous sections, we discussed SQL as an interactivelanguage: you type
in a query and the see the results on your screen. In order to write application
programs, SQL statements must included in some conventional language, such
as C, COBOL, Java or Visual Basic. The main problem to solve isthe fact that
a mismatch exists between the data structures of the programming language,
which operates on records, and those of SQL, which operates on relations, i.e.
sets of records. Therefore, a mechanism is required to supply the result of an
SQL expression to the programming language, one element at atime.

The standard solution is to declare acursor for each query to be evaluated:
a cursor is a \logical pointer" that ranges over all the tuples of the result of
an SQL statement. To evaluate an SQL statement, the cursor isopened, and
then, using a fetch operator, the \next" tuple of the result is retrieved, the
components of each tuple are copied into a list of variables of the host language
program, and the cursor is advanced to point to the next tuple. An exception
is raised when a fetch is attempted beyond the last tuple of the result.

SQL statements can be included in an application program in three di�erent
ways:

1. Extended language. The language is a superset of SQL, supplementing it
with standard programming-language features that includethe following:
block (modular) structure,
ow-control statements and loo ps, variables,

56 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

constants, and types, structured data, and customized error handling. The
language compiler can control completely that SQL statements are well
formed. A notably example is Oracle PL/SQL.
Let us illustrate the approach by showing two programs which print the
name and birth year of the students of Pisa. The �rst example (Figure 4.3)
use the standard cursor, while the second example use a special construct
FOR with an implicit cursor (Figure 4.4).

PROCEDURE Example1 (Cty IN Students.City%TYPE) IS
DECLARE

CURSOR c IS
SELECT Name, BirthYear
FROM Students WHERE City = Cty;

Stud Rec c%ROWTYPE;
BEGIN
{ retrieve a set of records
OPEN c

LOOP
FETCH c INTO Stud Rec;
EXIT WHEN c%NOTFOUND;
PRINT ... Stud Rec.Name ... StudRec.BirthYear ...

END LOOP;
CLOSE c { cursor is released

Figure 4.3 A PL/SQL example with cursor

PROCEDURE Example2 (Cty IN Students.City%TYPE) IS
BEGIN

FOR Stud Rec IN (
SELECT Name, BirthYear
FROM Students WHERE City = Cty)

LOOP
PRINT ... Stud Rec.Name ... StudRec.BirthYear ...

END LOOP; { cursor is released
END

Figure 4.4 A PL/SQL example with implicit cursor

2. Application programming interface (API) . Rather than design a new com-
piler, a standard programming language is used with a library of functions
(API) which accept string SQL as parameter. Since SQL statements are
passed to a function as strings, they cannot be controlled statically by the
compiler, but are controlled dynamically by the DBMS. Micro soft's ODBC
is the C/C++ standard API on Windows while Sun's JDBC is the Ja va
equivalent. The API are DBMS-neutral and a driver traps the calls and
translates them into DBMS-speci�c code.
Let us illustrate the approach by showing a Java program which print the
name and birth year of the students of Pisa using the JDBC API (Fig-
ure 4.5).

3. Embedded SQL. SQL statements can be used within a host language pro-

c
 A. Albano 4.3 SQL: A Relational Database Language 57

class PrintStudentsNamef
public static void main(String argv[])f
Class.forName("DBMS driver");
Connection con = // connect

DriverManager.getConnection("url", "login", "psw");
Statement stmt = con.createStatement(); // set up stmt
String query = "SELECT Name

FROM Students
WHERE City = "' + argv[0] + " "';

ResultSet iter = stmt.executeQuery(query);
System.out.println("Names retrieved:");
try f // to handle exceptions

// loop through result tuples
while (iter.next()) f

String name = iter.getString("Name");
int year = iter.getInt("BirthYear");
System.out.println(" Name: " + name + "; BirthYear: " + year);

g
g catch(SQLException ex)f
System.out.println(ex.getMessage() + ex.getSQLState() +ex.getErrorCode());
g
stmt.close(); con.close();
gg

Figure 4.5 An example of API

gram. Before the program can be compiled by the host languagecompiler,
the SQL statements must be processed by a pre-compiler, which check SQL
syntax, the number and types of arguments and results, and replace them
into calls to a library of functions. At runtime these functi ons communicate
with the DBMS.
Let us illustrate the approach by showing a C program which prints the
name and birth year of the students of Pisa (Figure 4.6).
Figure 4.7 shows the same example inSQLJ, is a dialect of embedded SQL
that can be included in Java programs. The pre-compiler replaceSQLJ con-
structs by call to a library which accesses a database using calls to a JDBC
driver.
The statement #SQL iterator GetInfoStIte . . . in the �gure tells the pre-compiler
to generate a classGetInfoStIte which implements an iterator with the next()
method. The classGetInfoStIte is used to store result sets in which each row
has two columns: a string and an integer. The declaration gives a Java name
to these columns,Name and Year, and implicitly de�nes the column accessor
methods, Name() and Year(), which can be used to return data stored in the
corresponding columns.

4.3.5 Exercises

1. Give a relational schema in SQL for the following databases:

(a) Your solution to Exercise 3.3.1(1).
(b) Your solution to Exercise 3.3.1(2).

2. Give a relational schema in SQL for your solution to Exercise 3.3.1(3), and write
the following queries:

(a) Retrieve the birth-date and name of the female employees.

58 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
char c sname[20]; short cBirthYear;
EXEC SQL END DECLARE SECTION
short c City = "Pisa";
EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.name, S.BirthYear
FROM Students S
WHERE S.City = :c City
ORDER BY S.name;

do f
EXEC SQL FETCH sinfo INTO :csname, :cBirthYear;
printf("Name:%s; BirthYear: %s ", c sname, cBirthYear);

g while (SQLSTATE != 02000);
EXEC SQL CLOSE sinfo;

Figure 4.6 An example of embedded SQL

public static void main(String argv[])f
Oracle.connect("jdbc:oracle:oci8:@", "scott", "tiger");

#SQL iterator GetInfoStIter(String Name, int Year);
GetInfoStIter iter;

#SQL iter = f
SELECT Name, BirthYear AS Year
FROM Students
WHERE City =:(argv[0]) g;

System.out.println("Students retrieved");
while (iter.next()) f

String name = iter.Name();
int year = iter.Year();
System.out.println(" Name = " + name + " Year = " + year);

g

iter.close();
Oracle.close();g

Figure 4.7 An example of SQLJ

c
 A. Albano 4.3 SQL: A Relational Database Language 59

(b) For each employee, retrieve the employee name and the name of the depart-
ment where he works.

(c) Retrieve the distinct salary of every employee.
(d) Retrieve the names and the ages of female employees olderthan their super-

visor.
(e) Retrieve the names of all employees who do not have supervisors.
(f) Retrieve the name and address of all employees who work for the \Research"

department.
(g) For every project located in \Pisa", list the project num ber, the controlling

department number, and the departament manager's name, address, and birth-
date.

(h) Make a list of all projects numbers for projects that involve an employee whose
last name is Smith, either as a worker or as a manager of the department that
controls the project.

(i) Retrieve the names of employees who have no dependents.
(j) List the names of supervisors who have at least one dependent.
(k) For each employee, retrieve the employee's name and the name of his or her

immediate supervisor.
(l) Retrieve the name of each employee who has a dependent with the same �rst

name and sex as the employee.
(m) Retrieve a list of employees and the projects they are working on, ordered by

department and, within each department, ordered alphabetically by name.
(n) Find the sum of the salaries of all the employees of the Research department,

as well as the the maximum salary, the minimum salary, and theaverage salary
in this department.

(o) For each department, retrieve the department number, the number of employ-
ees in the department, and their average salary.

(p) For each project on which more than two employees work, retrieve the project
number, the project name, and the number of employees who work on the
project.

(q) For each project, retrieve the project number, the project name, and the num-
ber of employees from department 5 who work on the project.

(r) For each department having more than �ve employees, retrieve the department
number, the number of employees making more than 40.000.

(s) Retrieve the name of each employee who has all dependentswith the same sex
as the employee.

(t) Retrieve the name of each employee who has all dependentswith the same
sex.

(u) Retrieve the names of the employees who work only to projects for 20 percent-
time.

(v) Retrieve the name of each employee who work only on projects controlled by
department number 5.

(w) Retrieve the name of each employee who work only on projects controlled by
the same department.

(x) Retrieve the name of each employee who work on all the projects (and only
those) to which the employee 100 participates.

60 CHAPTER 4 DBMS: The User Perspective c
 A. Albano

