Strumenti Utente

Strumenti Sito


magistraleinformatica:aa2:midterm14_15

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
magistraleinformatica:aa2:midterm14_15 [13/03/2015 alle 17:19 (10 anni fa)] Davide Bacciumagistraleinformatica:aa2:midterm14_15 [13/03/2015 alle 17:35 (10 anni fa)] (versione attuale) – [AA2 - Midterm Reading List A.A. 2014-15] Davide Bacciu
Linea 1: Linea 1:
-====== Machine Learning: Neural Networks and Advanced Models (AA2) ====== +====== AA2 Midterm Reading List 2014-15 ======
- +
-===== Midterm Reading List A.A. 2014-15 =====+
  
 In the following, it is a list of the topics and articles for the midterm assignment. In the following, it is a list of the topics and articles for the midterm assignment.
Linea 10: Linea 8:
 ==== 1. Self-Organizing Map for sequences ==== ==== 1. Self-Organizing Map for sequences ====
  
-**Reading Material:** T. Voegtlin "Recursive self-organizing maps." Neural Networks 15.8 (2002): 979-991. [[magistraleinformatica:aa2:rsom02.pdf| pdf]]+**Reading Material:** T. Voegtlin "Recursive self-organizing maps." Neural Networks 15.8 (2002): 979-991. {{magistraleinformatica:aa2:rsom02.pdf| pdf}}
  
 **Questions:**  Describe the recursive encoding of sequences in the RSOM.  Report and discuss the network error and the update equations for the network weights. Provide a comparison between RSOM, temporal SOM and recurrent SOM (also showing the differences in the respective activation functions). **Questions:**  Describe the recursive encoding of sequences in the RSOM.  Report and discuss the network error and the update equations for the network weights. Provide a comparison between RSOM, temporal SOM and recurrent SOM (also showing the differences in the respective activation functions).
Linea 16: Linea 14:
 ==== 2. Echo State Networks for indoor localization ==== ==== 2. Echo State Networks for indoor localization ====
  
-**Reading Material:** D. Bacciu, P. Barsocchi, S. Chessa, C. Gallicchio, A. Micheli, An experimental characterization of reservoir computing in ambient assisted living applications, Neural Computing and Applications, vol. 24 (6), pag. 1451–1464, 2014 +**Reading Material:** D. Bacciu, P. Barsocchi, S. Chessa, C. Gallicchio, A. Micheli, An experimental characterization of reservoir computing in ambient assisted living applications, Neural Computing and Applications, vol. 24 (6), pag. 1451–1464, 2014 {{magistraleinformatica:aa2:localization.pdf| pdf}}
  
 **Questions:** Describe the application and the experimental scenario: highlight the differences between the homogenous and heterogeneous settings.  Describe the leaky integrator echo state network: discuss changes (also with equations) with respect to the standard ESN.  Why is the leaky integrator needed?  **Questions:** Describe the application and the experimental scenario: highlight the differences between the homogenous and heterogeneous settings.  Describe the leaky integrator echo state network: discuss changes (also with equations) with respect to the standard ESN.  Why is the leaky integrator needed? 
Linea 22: Linea 20:
 ==== 3. Minimum complexity Echo State Networks ==== ==== 3. Minimum complexity Echo State Networks ====
  
-**Reading Material:** Rodan, P. Tino, Minimum complexity echo state network, IEEE Transactions on Neural Networks, vol. 22(1), pag. 131-144, 2011+**Reading Material:** Rodan, P. Tino, Minimum complexity echo state network, IEEE Transactions on Neural Networks, vol. 22(1), pag. 131-144, 2011 {{magistraleinformatica:aa2:minCompESN.pdf| pdf}}
  
 **Questions:** Describe the DLR, DLRB and SCR topologies of an ESN. Sketch the demonstration of the memory capacity MC for an SCR (theorem 1).  Summarize the experimental results:  what minimal topology/parameterization has performance levels comparable to standard ESNs? **Questions:** Describe the DLR, DLRB and SCR topologies of an ESN. Sketch the demonstration of the memory capacity MC for an SCR (theorem 1).  Summarize the experimental results:  what minimal topology/parameterization has performance levels comparable to standard ESNs?
Linea 28: Linea 26:
 ==== 4. Long-Short term memory networks ==== ==== 4. Long-Short term memory networks ====
  
-**Reading Material:** Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.+**Reading Material:** Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780. {{magistraleinformatica:aa2:lstm.pdf| pdf}}
  
 **Questions:**  Explain the vanishing gradient problem. Describe the LSTM architecture and main equations. What is the role of the gate units? **Questions:**  Explain the vanishing gradient problem. Describe the LSTM architecture and main equations. What is the role of the gate units?
Linea 34: Linea 32:
 ==== 5. Structure finding in Bayesian Networks ==== ==== 5. Structure finding in Bayesian Networks ====
  
-**Reading  Material:** D.Bacciu, T.A. Etchells, P.J.G. Lisboa and J. Whittaker, "Efficient identification of independence networks using mutual information", Computational Statistics, Springer, vol 28, no. 2, pp 621-646, Apr. 2013+**Reading  Material:** D.Bacciu, T.A. Etchells, P.J.G. Lisboa and J. Whittaker, "Efficient identification of independence networks using mutual information", Computational Statistics, Springer, vol 28, no. 2, pp 621-646, Apr. 2013 {{magistraleinformatica:aa2:pcAlgo.pdf| pdf}}
  
 **Questions:** Summarize the standard PC algorithm: describe the test of conditional independence and how it is computed with Mutual Information. Explain what is a False Negative in this scenario and describe the idea of power correction for reducing false negatives.  Describe the concept of strong and weak edges and how/why this is used for the test-the-weakest-first policy. **Questions:** Summarize the standard PC algorithm: describe the test of conditional independence and how it is computed with Mutual Information. Explain what is a False Negative in this scenario and describe the idea of power correction for reducing false negatives.  Describe the concept of strong and weak edges and how/why this is used for the test-the-weakest-first policy.
Linea 40: Linea 38:
 ==== 6. Image-Denoising with the Ising model ==== ==== 6. Image-Denoising with the Ising model ====
  
-**Reading Material:** Section 8.3.3 from Bishop chapter.+**Reading Material:** Section 8.3.3 from Bishop chapter ([[http://research.microsoft.com/en-us/um/people/cmbishop/prml/pdf/Bishop-PRML-sample.pdf|pdf]])
  
 **Questions:** Describe the problem and the associated Markov random field. Provide the energy function equations and discuss their interpretation for the particular application. **Questions:** Describe the problem and the associated Markov random field. Provide the energy function equations and discuss their interpretation for the particular application.
Linea 46: Linea 44:
 ==== 7. Bi-Directional Hidden Markov Models ==== ==== 7. Bi-Directional Hidden Markov Models ====
  
-**Reading Material:** Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., & Soda, G. (2001). Bidirectional dynamics for protein secondary structure prediction. In Sequence Learning (pp. 80-104). Springer Berlin Heidelberg.+**Reading Material:** Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., & Soda, G. (2001). Bidirectional dynamics for protein secondary structure prediction. In Sequence Learning (pp. 80-104). Springer Berlin Heidelberg. {{magistraleinformatica:aa2:bidir-hmm.pdf| pdf}}
  
 **Questions:** Describe the bi-diretional IO-HMM and discuss the equation for its joint distribution factorization: identify the model parameters and what are the stationariety assumptions. Summarize how the transition functions can be implemented using MLP neural networks. **Questions:** Describe the bi-diretional IO-HMM and discuss the equation for its joint distribution factorization: identify the model parameters and what are the stationariety assumptions. Summarize how the transition functions can be implemented using MLP neural networks.
Linea 52: Linea 50:
 ==== 8. Max-product Algorithm ==== ==== 8. Max-product Algorithm ====
  
-**Reading Material:** Section 5.2.1 of David Barber’s Book.+**Reading Material:** Section 5.2.1 of David Barber’s Book [BRML].
  
 **Questions:** Describe what is the typical max-product inference problem: why is different from sum-product? Describe the variable elimination idea in max-product. Describe the max-product message passing using factor graphs. **Questions:** Describe what is the typical max-product inference problem: why is different from sum-product? Describe the variable elimination idea in max-product. Describe the max-product message passing using factor graphs.
Linea 58: Linea 56:
 ==== 9. Markov Chains and Pagerank ==== ==== 9. Markov Chains and Pagerank ====
  
-**Reading Material:** Jia Li, Markov Chain Interpretation of Google Page Rank, Tech Report. Integrate with David Barber’s Book, pages from 461 to 463.+**Reading Material:** Jia Li, Markov Chain Interpretation of Google Page Rank, Tech Report ({{magistraleinformatica:aa2:pagerankMC.pdf| pdf}}). Integrate with David Barber’s Book [BRML], pages from 461 to 463.
  
 **Questions:** Describe the Pagerank algorithm from a Markov Chain point of view. Define the concepts of stationary and equilibrium distribution and discuss their interpretation in terms of Pagerank. **Questions:** Describe the Pagerank algorithm from a Markov Chain point of view. Define the concepts of stationary and equilibrium distribution and discuss their interpretation in terms of Pagerank.
  
magistraleinformatica/aa2/midterm14_15.1426267195.txt.gz · Ultima modifica: 13/03/2015 alle 17:19 (10 anni fa) da Davide Bacciu

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki